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Introduction

RD on growing domains

Self-organisation models: Turing (mathematical); Allen-Cahn,
Cahn-Hilliard (physical, free energy)
The dimensional model is given by

Oru+ Vy.(av) = D,V2u + f(u,v)
Orv + Vi.(av) = D,V2v + g(u, v),
with x € Q := [0, L(t)] and a is the velocity vector induced by domain

growth.
Zero-flux boundary conditions at the boundary 99Q(t).
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Introduction

RD on growing domains. Lagrangian frame

Non-dimensional form (Up, t = L2/D,7, Lo = L(0))

o-u-+ h(7)u = DAcu + ~vF.(u).
( ) (pQ(T) 3 Y ( )
where h(1) = [1/L]OL/O7 is the non-dimensional expansion rate of the
domain and L(t(r)
T t(r
(1) = exp/ h(g)dg = —=——,
0 Lo
and

D = diag(1,d),d = D, /D, > 1 ~=wl}/D,.
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RD on growing domains. Expansion

Exponential growth ¢(7) = e, h(7) = r and with D = dD, = D, /u? we
have

2
o, <L‘:) L (5) — e 21tp </6 2) Osx (5) +J <L‘;) for xe (0, 1))
u 0
o (V) <0> at x = 0,1,

We focus on the amplitude equations for each mode cos(kx), k = nm

2,2
P\ _ _—2rtpg (P p : _(—wkD 0
Ot (q) =e ™M (q) +J, (q) with M= ( 0 —k2D>

and where J, =J —rl.
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RD on growing domains. Expansion |l

Let F(t) = [, ds(¢(s)) 2= & (1 — e72") and

(3) =ewl-rFiom (%).
(=0 (2 b0y

we have that (p, g)" decays if and only if (a, b) " decays.
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Amplitude problem. Non-autonomous ODE |

The evolution equation for (a, b) is

0, <Z> = exp[-F(t)M].J,.exp [F(t)M]. <Z)

< Jii—r Jiz expl(p? — 1)’@2(15))]) <3>
J21 exp[(l — MZ)FLZ(t))] J22 —r “\b)’

where k2(t) = k2DF(t). Equivalently

afa = (J11 — r)@ta
+ Jiadon [(1? — VKD (p()) 7 + (Ja2 — r)] (9ra — (J11 — r)a),

with b given in terms of a and its time derivative, using the first equation.
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Amplitude problem. Non-autonomous ODE I

Instead of special functions we reduce the order (linear ODE)

a(0) = ao(®) (G + [ asu(s)) . )= G ep (— [ astiots))?)

where ag(t) is a particular solution of the equation and Cj, G, are

integration constants.
We choose C; = 1/ap(0) so that perturbations initiate from 1.
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Amplitude problem. Particular example |

Consider r =1/2, 4 =1/10, D =100/99 and

= (5 )

Then a particular solution is
ao(t) = exp[—3t + e Tk?|k? + 2 exp[—2t + e tk?]

and the general solution reads

—k? 2o-s
a(t) = ap(t) <k2 T + C2/ dsezs(k;; . +—;)§)) .
It is instructive to expand the solution about t =0
Co — k® — 5k* — 4k2
(k? +2)k?
to see that first few modes of the perturbations grow initially even though
they later decay.
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Amplitude problem. Particular example Il
Now consider growth rate r = 1/6. A particular solution is
ao(t) = exp [3k2e*%f] (81k1°e*?f + 1080k8e 3t +
5040k%e ™ 3¢ + 10080k%e™ 5* + 8400k2e 2t + 2240e—§f),
and the general solution for t ~ O(1) and k > 1 is
a(t) =~ 81GkYe~ exp 3k2 / ds exp 3k2 ]
= 81GkY%~ Tteselt )/ ds e~ 5EE)e5 s
0
with § = 1/[3k?] < 1 and g(t) = e~*/3. Finally, using Laplace’s method for t >> § we have
a(t) = 81C2k10etetg/(t)/5 /tds e (1)/8 o 81GkBe*t/3.
0

sensitivity to initial noise; non-linear system can pick up transient growth;
transient growth can be more extensive as k increases (breakdown of the

model)
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Figures |

G, = 0 (red solid) and G, = 1073 with k = 2 (blue dashed)

a)
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Figures Il

G, = 1073 for k = 1 (red solid), k = 3 (dark blue dashed), k = 5 (green
dash-dotted), k = 7 (light blue dotted) and k = 9 (purple densely dotted)
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Increase of k
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A more general picture

General uniform growth. Nonautonomous ODE

For a general (smooth enough) uniform growth, dimension, (smooth
bounded) domain we have an amplitude equation of the form We establish
some growth bounds on general second order non-autonomous ODE of the
form

Y + F(t)Y +G(t)Y =0. (1)

We shall show that
Thrm. Let ® € C?(R) such that ®(t) > 0 for all t € Z. Consider the ODE
(1) and suppose that

G(t) < —;)—(;)F(t), tel. (2)

Then, (1) has a fundamental solution Y (t) with |Y(t)| > ®(t) for all
tel.
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A more general picture

Proof of the lower bound |

Proof. Equality: ® is a solution.

Next, consider G(t) = —% - %F(t) — H(t) for some H(t) > 0.
Then, (1) reads

V+me_<g% ‘a m+HU>Y:Q (3)

The change of variable Y (t) = Y (to) exp (ftz Z(s)

ds) (with choice
Y (to) = (to) and Y (to) =

®(tg)) we transform (3) into

Z=-7%— FUZ+¢+¢H)+WQZZ2 aﬂ+¢

o @ ® q>F(t)_Zl

(4)
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A more general picture

Proof of the lower bound Il

It is easy to verify that Z;(t) = &(t)/d(t).
By differential inequality (4) and since Z(ty) = Zi(tp), we have
Z(t) > Zi(t) for all t € T and hence

Y(t) = ¥(to) exp </t: Z(s)ds> > Y (1) exp (/t: Zl(s)ds) — (1),

Then, for this choice of initial data,

Y(t)| > ®(t) forall t € T.
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Corollary

Consider ®(t) = exp(dt) for some § > 0. From theorem, we have

¢ @ ¢
G(t) < o 25; . ((p + 5) F(t).

Taking § — 0%, and strict inequality, we recover the weakest bound for
exponential growth during t € Z,

¢ ¢
G(t) < ——= — L F(t), forall tel.
(1) P (1)

Weaker (polynomial) lower bounds are available as well.
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A more general picture

Implications for Tl on growing domains

o Sufficient condition for Tl on growing domains which exactly reduces
to classical Tl conditions on static domains

e D,/D, # 1 for Tl

@ transient behaviour analysis and its dependence on k can be analysed

using the criterion:
when .

!

Jjjldj = d-j) < ;(dj —d-)).

large enough modes become unstable. For fast enough growth this
inequality is satisfied and hence fast growth always yields transient
exponential growth for large wavenumbers.

@ no need for slow growth; history dependence
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Conclusion

Summary

@ Non-autonomous (ODEs) have some distinct qualitative features and
are hard to analyse

@ Transient growth seems to be an easier problem than large time
behaviour

@ application to TI

arXiv:1904.09683
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