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Metamaterials

Negative Index Metamaterial: ε, µ < 0

—

Negative permitivity ε - plasma physics, first NIM with both ε, µ < 0
designed in 1999 by Pendry et al1.

1John B Pendry, Anthony J Holden, David J Robbins, and WJ Stewart. Magnetism
from conductors and enhanced nonlinear phenomena. IEEE transactions on microwave
theory and techniques, 47(11):2075–2084, 1999.
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Figure: The conventional material (left) derives its properties from atoms.
However, in the metamaterial (right) the role of the atoms is now played by
small sub-units.2

2John B Pendry. Negative refraction. Contemporary Physics, 45(3):191–202, 2004.
Amru Hussein.
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Figure: A split ring structure on copper circuit board with copper wires to give
both ε, µ < 03.

3John B Pendry. Negative refraction. Contemporary Physics, 45(3):191–202, 2004.
Amru Hussein.
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V. Veselago

The first one to considered both ε, µ < 0 was Russian physicist Victor
Veselago in 19674. The refractive index stays positive and real, so he
asked if there would be any difference at all.

v =
c

n
, n =

√
εµ.

4Viktor G Veselago. Electrodynamics of substances with simultaneously negative
and. Usp. Fiz. Nauk, 92:517, 1967.
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Effects
Poynting vector ~S = 1

4π
~E × ~H usually points in direction of ~k, but in

metamaterial it points opposite to ~k . This leads to interesting effects
such as reversed Cherenkov radiation cone, superlensing and
metamaterial cloaking.

Figure: Medium bends light to a negative angle relative to the surface normal.
Released from the medium, the light reaches a focus for a second time in the
image plane.5

5John B Pendry. Negative refraction. Contemporary Physics, 45(3):191–202,
2004.
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Mathematical model

Quasi-static approximation will be considered. Next, only electric field
will be investigated.

div ~D = ρ, rot ~E = 0

and ~E is represented by potential ~E = − gradϕ.

Further substituting ~D = ε~E :

− div(ε gradϕ) = ρ.
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Reminder

Sobolev spaces

Hk(Ω) =
{

f ∈ L2(Ω) | ∀|α| < k , ∃f (α) weakly, ‖f (α)‖L2 <∞
}
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A composite string
Consider a string composed of both metamaterial and a regular material6

ε(x) =

{
ε+, if x ∈ (0, a),

−ε−, if x ∈ (−b, 0).

ε < 0 ε > 00−b a

− div ε gradϕ
1D−→ −(εϕ′)′

To overcome problems with ill-posedness because of ε discontinuity at
interface, we resctrict possible ϕ with condition:

ϕ+ := ϕ � (0, a) ϕ− := ϕ � (−b, 0)

ϕ+(0+) = ϕ−(0−) ε+ϕ
′
+(0+) = −ε−ϕ′−(0−),

and set ϕ+ ∈ H2((0, a)) and ϕ− ∈ H2((−b, 0)).

6Amru Hussein. Sign-indefinite second-order differential operators on finite metric
graphs.
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A composite string
Impose Dirichlet boundary conditions and set

Ω+ = (0, a), Ω− = (−b, 0).

Then we can define operator A1 on L2((−b, a)) :

A1

(
ϕ+

ϕ−

)
=

(
−ε+ϕ

′′
+

ε−ϕ
′′
−

)
,

dom A1 =


ϕ−(−b) = 0 = ϕ+(a),

ϕ =

(
ϕ+

ϕ−

)
∈ H2(Ω+)⊕ H2(Ω−) ϕ+(0) = ϕ−(0),

ε+ϕ
′
+(0) = −ε−ϕ′−(0)


This operator is selfadjoint78 and σess(A1) = ∅.

7Filip Hložek. Operator theoretic approach to the theory of metamaterials. BSc.
thesis, 2014.

8Sabina, Zairova. Časový vývoj metamateriálových strun. BSc. thesis. České
vysoké učeńı technické v Praze. Vypočetńı a informačńı centrum., 2019.
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A composite rectangle

Ω− Ω+

y

x

−b a

c

C

−ε− ε+

Ω+ = (0, a)× (0, c), Ω− = (−b, 0)× (0, c), C = {0} × (0, c),

Ω = Ω+ ∪ C ∪ Ω− ⊂ R2

− div(ε grad f ) for constant ε+, ε− > 0 with Dirichlet boundary condition.

This case was examined in 20149 for ε− = ε+.

9Jussi Behrndt and David Krejčǐŕık. An indefinite Laplacian on a rectangle. Journal
d’Analyse Mathématique, 134(2):501–522, 2018.
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A composite rectangle

It turns out that operator A2 on L2(Ω)

A2

(
f+

f−

)
=

(
−ε+∆f+

ε−∆f−

)
,

dom A2 =


f±|∂Ω = 0,

f =

(
f+

f−

)
∈ H2(Ω+)⊕ H2(Ω−) f+|C = f−|C ,

ε+∂nf+|C = ε−∂nf−|C

 ,

is essentially selfadjoint and 0 ∈ σess(A2) ⇐⇒ ε+ = ε−.

0 is infinitely degenerate eigenvalue ⇐⇒ a = b, otherwise it is an
accumulation point of σ(A2).
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Tubular neigbourhoods

2D Riemannian manifold M, geodesic curve Γ : (0, c)→M, |Γ̇(x2)| = 1

−b
a

c

N(x2)

Γ(x2) Ω

M

Ω0− Ω0+

x2

x1

−b a

c

C

−ε− ε+

(Ω0, g)

0

L−1

0

Ω := L(Ω0), L(x1, x2) := expΓ(x2)(x1N(x2)).10

10David Krejčǐŕık and Petr Siegl. PT -symmetric models in curved manifolds.
Journal of Physics A: Mathematical and Theoretical, 43(48):485204, 2010.
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induced metric on (Ω0, g): (gij)=

(
1 0
0 f 2

)
, Jacobi equation for f :

∂2
1 f + Kf = 0 ∧

{
f (0, ·) = 1, on interface C
∂1f (0, ·) = −κ = 0

and for constant K

f (x1, x2) =


cos(
√

K x1) if K > 0,

1 if K = 0,

cosh(
√
|K |x1) if K < 0.
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Operator BK

Laplace-Beltrami on (Ω0, g) :

− div(ε gradϕ) = −1

f
∂1 (εf ∂1ϕ)− 1

f
∂2

(
ε

1

f
∂2ϕ

)
.

Define BK on L2(Ω0, f dx)

BK

(
ϕ+

ϕ−

)
=

(
−ε+∆gϕ+

ε−∆gϕ−

)
and domain will be very similar to 2D case.
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BK ←1−1−−→ |K |Bsgn(K)

Figure: 11

11PT -symmetric models in curved manifolds. Journal of Physics A: Mathematical
and Theoretical, 43(48):485204, 2010.
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Separation of variables

ϕ(x1, x2) =
∞∑

m=1

ψm(x1)φm(x2)

BKϕ =
∞∑

m=1

(Bm
K ψm)⊗ φm,

φm(x2) =

√
2

c
sin(

mπ

c
x2)

Bm
K :=

(
ε+

−ε−

)
·


−∂2

1 + tan(x1)∂1 + (mπ)2

c2 cos2(x1) , if K = 1,

−∂2
1 + (mπ

c )2, if K = 0,

−∂2
1 − tanh(x1)∂1 + (mπ)2

c2 cosh2(x1)
, if K = −1.
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Solutions

Solutions for Bm
1 ψ± = λψ±
±ε±(−ψ′′± + tan(x)ψ′± + (mπ)2

c2 cos2(x)ψ±) = λψ±,

ψ+(a) = 0 = ψ−(−b),

ψ+(0+) = ψ−(0−),

ε+ψ
′
+(0+) = −ε−ψ′−(0−).

Solution given in terms of associated Legendre P
(µ)
ν ,Q

(µ)
ν functions.

If we set λ = 0, a = b, solution is given in terms elementary functions.
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Figure: K = 1
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Figure: K = −1
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Unitary transformation for K = 1

U+1 : L2
(
(−b, a), dx1

)
→ L2

(
(−b, a), cos(x1) dx1

)
,

(U+1ψ)(x) := cos(x)−
1
2ψ(x)

U−1
+1 Bm

1 U+1 = A1D + V+1

Figure: Multiplicative potential V+1.
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Properties

Bm
1 ←

U+1−−→ A1D + V+1

=⇒ Bm
1 selfadjoint =⇒ B1 essentially selfadjoint,

Bm
−1 ←

U−1−−→ A1D + V−1

=⇒ Bm
−1 selfadjoint =⇒ B−1 essentially selfadjoint,

=⇒ BK essentially selfadjoint.
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Properties

In 2D: A2D essentially selfadjoint
Now: X

In 2D: 0 ∈ σess(A2D) ⇐⇒ ε+ = ε+.
Now: ? (probably)

In 2D: λ = 0 is infinitely degenerate eigenvalue ⇐⇒ a = b ∧ ε+ = ε−.
Now: X
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Proof of A1 self-adjointness

A1 is symmetric: (φ,A1ψ) = (A1φ, ψ) for φ, ψ ∈ dom A1.

Now for per-partes (φ ∈ dom A∗1 , ψ ∈ dom A1) we need φ′, φ′′ ∈ dom A∗1 .
For this we define restriction Ȧ1 ⊂ A1:

dom Ȧ1 =


ϕ−(−b) = 0 = ϕ+(a),

ϕ =

(
ϕ+

ϕ−

)
∈ H2(Ω+)⊕ H2(Ω−) ϕ+(0) = 0 = ϕ−(0),

ε+ϕ
′
+(0) = 0 = −ε−ϕ′−(0)


then12

dom Ȧ∗1 =

{
ϕ =

(
ϕ+

ϕ−

)
∈ H2(Ω+)⊕ H2(Ω−) | ϕ−(−b) = 0 = ϕ+(a) }.

12Kato, Tosio. Perturbation theory for linear operators. Vol. 132. Springer Science
Business Media, 2013.
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Theorem

Let A be a symmetric operator on Hilbert space H and {ψn}∞n=0

orthonormal basis in H. Then if for each n ∈ N holds: ψn ∈ dom A and
there exists λn s.t. Aψn = λnψn, then A is essentially self-adjoint.

Spectrum of A is closure σ(A)
R

in R.
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