Metamaterial transitions on curved manifolds Bachelor thesis

Tomáš Faikl
Supervisor: doc. Mgr. David Krejčiřík, Ph.D. DSc.
FNSPE, CTU in Prague, Czech Republic

17/06/2021

Metamaterials

Negative Index Metamaterial: $\epsilon, \mu<0$

Negative permitivity ϵ - plasma physics, first NIM with both $\epsilon, \mu<0$ designed in 1999 by Pendry et al ${ }^{1}$.

[^0]

Figure: The conventional material (left) derives its properties from atoms. However, in the metamaterial (right) the role of the atoms is now played by small sub-units. ${ }^{2}$

[^1]

Figure: A split ring structure on copper circuit board with copper wires to give both $\epsilon, \mu<0^{3}$.
${ }^{3}$ John B Pendry. Negative refraction. Contemporary Physics, 45(3):191-202, 2004. Amru Hussein.

V. Veselago

The first one to considered both $\epsilon, \mu<0$ was Russian physicist Victor Veselago in 1967^{4}. The refractive index stays positive and real, so he asked if there would be any difference at all.

$$
v=\frac{c}{n}, \quad n=\sqrt{\epsilon \mu} .
$$

[^2]
Effects

Poynting vector $\vec{S}=\frac{1}{4 \pi} \vec{E} \times \vec{H}$ usually points in direction of \vec{k}, but in metamaterial it points opposite to \vec{k}. This leads to interesting effects such as reversed Cherenkov radiation cone, superlensing and metamaterial cloaking.

Figure: Medium bends light to a negative angle relative to the surface normal. Released from the medium, the light reaches a focus for a second time in the image plane. ${ }^{5}$

[^3]
Mathematical model

Quasi-static approximation will be considered. Next, only electric field will be investigated.

$$
\operatorname{div} \vec{D}=\rho, \quad \operatorname{rot} \vec{E}=0
$$

and \vec{E} is represented by potential $\vec{E}=-\operatorname{grad} \varphi$.
Further substituting $\vec{D}=\epsilon \vec{E}$:

$$
-\operatorname{div}(\epsilon \operatorname{grad} \varphi)=\rho .
$$

Reminder

Sobolev spaces

$$
H^{k}(\Omega)=\left\{f \in L^{2}(\Omega)|\forall| \alpha \mid<k, \exists f^{(\alpha)} \text { weakly, }\left\|f^{(\alpha)}\right\|_{L^{2}}<\infty\right\}
$$

A composite string

Consider a string composed of both metamaterial and a regular material ${ }^{6}$

$$
\epsilon(x)= \begin{cases}\epsilon_{+}, & \text {if } x \in(0, a), \\ -\epsilon_{-}, & \text {if } x \in(-b, 0)\end{cases}
$$

$-b \quad \epsilon<0 \quad 0 \quad \epsilon>0$

[^4]
A composite string

Consider a string composed of both metamaterial and a regular material ${ }^{6}$

$$
\epsilon(x)= \begin{cases}\epsilon_{+}, & \text {if } x \in(0, a) \\ -\epsilon_{-}, & \text {if } x \in(-b, 0)\end{cases}
$$

$-b$ $\epsilon<0$ 0 $\epsilon>0$

$$
-\operatorname{div} \epsilon \operatorname{grad} \varphi \xrightarrow{1 \mathrm{D}}-\left(\epsilon \varphi^{\prime}\right)^{\prime}
$$

To overcome problems with ill-posedness because of ϵ discontinuity at interface, we resctrict possible φ with condition:

[^5]
A composite string

Consider a string composed of both metamaterial and a regular material ${ }^{6}$

$$
\epsilon(x)= \begin{cases}\epsilon_{+}, & \text {if } x \in(0, a) \\ -\epsilon_{-}, & \text {if } x \in(-b, 0)\end{cases}
$$

$-b$ $\epsilon<0$

0
$\epsilon>0$

$$
-\operatorname{div} \epsilon \operatorname{grad} \varphi \xrightarrow{1 \mathrm{D}}-\left(\epsilon \varphi^{\prime}\right)^{\prime}
$$

To overcome problems with ill-posedness because of ϵ discontinuity at interface, we resctrict possible φ with condition:

$$
\begin{aligned}
\varphi_{+}:=\varphi \upharpoonright(0, a) & \varphi_{-}:=\varphi \upharpoonright(-b, 0) \\
\varphi_{+}\left(0^{+}\right)=\varphi_{-}\left(0^{-}\right) & \epsilon_{+} \varphi_{+}^{\prime}\left(0^{+}\right)=-\epsilon_{-} \varphi_{-}^{\prime}\left(0^{-}\right)
\end{aligned}
$$

and set $\varphi_{+} \in H^{2}((0, a))$ and $\varphi_{-} \in H^{2}((-b, 0))$.
${ }^{6}$ Amru Hussein. Sign-indefinite second-order differential operators on finite metric graphs.

A composite string

Impose Dirichlet boundary conditions and set

$$
\Omega_{+}=(0, a), \quad \Omega_{-}=(-b, 0) .
$$

Then we can define operator A_{1} on $L^{2}((-b, a))$:

[^6]
A composite string

Impose Dirichlet boundary conditions and set

$$
\Omega_{+}=(0, a), \quad \Omega_{-}=(-b, 0) .
$$

Then we can define operator A_{1} on $L^{2}((-b, a))$:

$$
\begin{gathered}
A_{1}\binom{\varphi_{+}}{\varphi_{-}}=\binom{-\epsilon_{+} \varphi_{+}^{\prime \prime}}{\epsilon_{-} \varphi_{-}^{\prime \prime}}, \\
\operatorname{dom} A_{1}=\left\{\begin{array}{ll}
\varphi=\binom{\varphi_{+}}{\varphi_{-}} \in H^{2}\left(\Omega_{+}\right) \oplus H^{2}\left(\Omega_{-}\right) & \begin{array}{l}
\varphi_{-}(-b)=0=\varphi_{+}(a) \\
\varphi_{+}(0)=\varphi_{-}(0), \\
\epsilon_{+} \varphi_{+}^{\prime}(0)=-\epsilon_{-} \varphi_{-}^{\prime}(0)
\end{array}
\end{array}\right\}
\end{gathered}
$$

[^7]
A composite string

Impose Dirichlet boundary conditions and set

$$
\Omega_{+}=(0, a), \quad \Omega_{-}=(-b, 0) .
$$

Then we can define operator A_{1} on $L^{2}((-b, a))$:

$$
A_{1}\binom{\varphi_{+}}{\varphi_{-}}=\binom{-\epsilon_{+} \varphi_{+}^{\prime \prime}}{\epsilon_{-} \varphi_{-}^{\prime \prime}},
$$

$\operatorname{dom} A_{1}=\left\{\begin{array}{l|l}\varphi=\binom{\varphi_{+}}{\varphi_{-}} \in H^{2}\left(\Omega_{+}\right) \oplus H^{2}\left(\Omega_{-}\right) & \begin{array}{l}\varphi_{-}(-b)=0=\varphi_{+}(a), \\ \varphi_{+}(0)=\varphi_{-}(0), \\ \epsilon_{+} \varphi_{+}^{\prime}(0)=-\epsilon_{-} \varphi_{-}^{\prime}(0)\end{array}\end{array}\right\}$

This operator is selfadjoint ${ }^{78}$ and $\sigma_{\text {ess }}\left(A_{1}\right)=\varnothing$.

[^8]
A composite rectangle

$$
\begin{gathered}
\Omega_{+}=(0, a) \times(0, c), \quad \Omega_{-}=(-b, 0) \times(0, c), \quad \mathcal{C}=\{0\} \times(0, c), \\
\Omega=\Omega_{+} \cup \mathcal{C} \cup \Omega_{-} \subset \mathbb{R}^{2}
\end{gathered}
$$

${ }^{9}$ Jussi Behrndt and David Krejčiřík. An indefinite Laplacian on a rectangle. Journal d'Analyse Mathématique, 134(2):501-522, 2018.

A composite rectangle

$$
\begin{gathered}
\Omega_{+}=(0, a) \times(0, c), \quad \Omega_{-}=(-b, 0) \times(0, c), \quad \mathcal{C}=\{0\} \times(0, c), \\
\Omega=\Omega_{+} \cup \mathcal{C} \cup \Omega_{-} \subset \mathbb{R}^{2}
\end{gathered}
$$

$-\operatorname{div}(\epsilon \operatorname{grad} f)$ for constant $\epsilon_{+}, \epsilon_{-}>0$ with Dirichlet boundary condition.

[^9]
A composite rectangle

$$
\begin{gathered}
\Omega_{+}=(0, a) \times(0, c), \quad \Omega_{-}=(-b, 0) \times(0, c), \quad \mathcal{C}=\{0\} \times(0, c), \\
\Omega=\Omega_{+} \cup \mathcal{C} \cup \Omega_{-} \subset \mathbb{R}^{2}
\end{gathered}
$$

$-\operatorname{div}(\epsilon \operatorname{grad} f)$ for constant $\epsilon_{+}, \epsilon_{-}>0$ with Dirichlet boundary condition.
This case was examined in 2014^{9} for $\epsilon_{-}=\epsilon_{+}$.

[^10]
A composite rectangle

It turns out that operator A_{2} on $L^{2}(\Omega)$

$$
A_{2}\binom{f_{+}}{f_{-}}=\binom{-\epsilon_{+} \Delta f_{+}}{\epsilon_{-} \Delta f_{-}},
$$

$$
\operatorname{dom} A_{2}=\left\{\begin{array}{l|l}
f=\binom{f_{+}}{f_{-}} \in H^{2}\left(\Omega_{+}\right) \oplus H^{2}\left(\Omega_{-}\right) & \begin{array}{l}
\left.f_{ \pm}\right|_{\partial \Omega}=0 \\
\left.f_{+}\right|_{\mathcal{C}}=\left.f_{-}\right|_{\mathcal{C}} \\
\left.\epsilon_{+} \partial_{\mathbf{n}} f_{+}\right|_{\mathcal{C}}=\left.\epsilon_{-} \partial_{\mathbf{n}} f_{-}\right|_{\mathcal{C}}
\end{array}
\end{array}\right\}
$$

is essentially selfadjoint and $0 \in \sigma_{\text {ess }}\left(A_{2}\right) \Longleftrightarrow \epsilon_{+}=\epsilon_{-}$.

A composite rectangle

It turns out that operator A_{2} on $L^{2}(\Omega)$

$$
A_{2}\binom{f_{+}}{f_{-}}=\binom{-\epsilon_{+} \Delta f_{+}}{\epsilon_{-} \Delta f_{-}},
$$

$\operatorname{dom} A_{2}=\left\{\begin{array}{l|l}f=\binom{f_{+}}{f_{-}} \in H^{2}\left(\Omega_{+}\right) \oplus H^{2}\left(\Omega_{-}\right) & \begin{array}{l}\left.f_{ \pm}\right|_{\partial \Omega}=0, \\ \left.f_{+}\right|_{\mathcal{C}}=\left.f_{-}\right|_{\mathcal{C}}, \\ \epsilon_{+} \partial_{\mathbf{n}} f_{+}\left|\mathcal{C}=\epsilon_{-} \partial_{\mathbf{n}} f_{-}\right| \mathcal{C}^{l}\end{array}\end{array}\right\}$,
is essentially selfadjoint and $0 \in \sigma_{\text {ess }}\left(A_{2}\right) \Longleftrightarrow \epsilon_{+}=\epsilon_{-}$.
0 is infinitely degenerate eigenvalue $\Longleftrightarrow a=b$, otherwise it is an accumulation point of $\sigma\left(A_{2}\right)$.

Tubular neigbourhoods

2D Riemannian manifold \mathcal{M}, geodesic curve $\Gamma:(0, c) \rightarrow \mathcal{M},\left|\dot{\Gamma}\left(x_{2}\right)\right|=1$

[^11]induced metric on $\left(\Omega_{0}, g\right):\left(g_{i j}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & f^{2}\end{array}\right)$, Jacobi equation for f :

$$
\partial_{1}^{2} f+K f=0 \wedge\left\{\begin{array}{l}
f(0, \cdot)=1, \text { on interface } \mathcal{C} \\
\partial_{1} f(0, \cdot)=-\kappa=0
\end{array}\right.
$$

induced metric on $\left(\Omega_{0}, g\right):\left(g_{i j}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & f^{2}\end{array}\right)$, Jacobi equation for f :

$$
\partial_{1}^{2} f+K f=0 \wedge\left\{\begin{array}{l}
f(0, \cdot)=1, \text { on interface } \mathcal{C} \\
\partial_{1} f(0, \cdot)=-\kappa=0
\end{array}\right.
$$

and for constant K

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\cos \left(\sqrt{K} x_{1}\right) & \text { if } K>0 \\ 1 & \text { if } K=0, \\ \cosh \left(\sqrt{|K|} x_{1}\right) & \text { if } K<0\end{cases}
$$

Operator B_{K}

Laplace-Beltrami on $\left(\Omega_{0}, g\right)$:

$$
-\operatorname{div}(\epsilon \operatorname{grad} \varphi)=-\frac{1}{f} \partial_{1}\left(\epsilon f \partial_{1} \varphi\right)-\frac{1}{f} \partial_{2}\left(\epsilon \frac{1}{f} \partial_{2} \varphi\right) .
$$

Operator B_{K}

Laplace-Beltrami on $\left(\Omega_{0}, g\right)$:

$$
-\operatorname{div}(\epsilon \operatorname{grad} \varphi)=-\frac{1}{f} \partial_{1}\left(\epsilon f \partial_{1} \varphi\right)-\frac{1}{f} \partial_{2}\left(\epsilon \frac{1}{f} \partial_{2} \varphi\right) .
$$

Define B_{K} on $L^{2}\left(\Omega_{0}, f \mathrm{~d} x\right)$

$$
B_{K}\binom{\varphi_{+}}{\varphi_{-}}=\binom{-\epsilon_{+} \Delta_{g} \varphi_{+}}{\epsilon_{-} \Delta_{g} \varphi_{-}}
$$

and domain will be very similar to 2D case.

$$
B_{K} \stackrel{1-1}{\longrightarrow}|K| B_{\mathrm{sgn}(K)}
$$

(a) $K=-1$, pseudosphere

(b) $K=0$, cylinder

(c) $K=1$, sphere

Figure: ${ }^{11}$

[^12]
Separation of variables

$$
\begin{aligned}
\varphi\left(x_{1}, x_{2}\right) & =\sum_{m=1}^{\infty} \psi_{m}\left(x_{1}\right) \phi_{m}\left(x_{2}\right) \\
B_{K} \varphi & =\sum_{m=1}^{\infty}\left(B_{K}^{m} \psi_{m}\right) \otimes \phi_{m} \\
\phi_{m}\left(x_{2}\right) & =\sqrt{\frac{2}{c}} \sin \left(\frac{m \pi}{c} x_{2}\right)
\end{aligned}
$$

Separation of variables

$$
\begin{gathered}
\varphi\left(x_{1}, x_{2}\right)=\sum_{m=1}^{\infty} \psi_{m}\left(x_{1}\right) \phi_{m}\left(x_{2}\right) \\
B_{K} \varphi=\sum_{m=1}^{\infty}\left(B_{K}^{m} \psi_{m}\right) \otimes \phi_{m}, \\
\phi_{m}\left(x_{2}\right)=\sqrt{\frac{2}{c}} \sin \left(\frac{m \pi}{c} x_{2}\right) \\
B_{K}^{m}:=\binom{\epsilon_{+}}{-\epsilon_{-}} \cdot \begin{cases}-\partial_{1}^{2}+\tan \left(x_{1}\right) \partial_{1}+\frac{(m \pi)^{2}}{c^{2} \cos ^{2}\left(x_{1}\right)}, & \text { if } K=1, \\
-\partial_{1}^{2}+\left(\frac{m \pi}{c}\right)^{2}, & \text { if } K=0, \\
-\partial_{1}^{2}-\tanh \left(x_{1}\right) \partial_{1}+\frac{(m \pi)^{2}}{c^{2} \cosh ^{2}\left(x_{1}\right)}, & \text { if } K=-1 .\end{cases}
\end{gathered}
$$

Solutions

Solutions for $B_{1}^{m} \psi_{ \pm}=\lambda \psi_{ \pm}$

$$
\left\{\begin{array}{l}
\pm \epsilon_{ \pm}\left(-\psi_{ \pm}^{\prime \prime}+\tan (x) \psi_{ \pm}^{\prime}+\frac{(m \pi)^{2}}{c^{2} \cos ^{2}(x)} \psi_{ \pm}\right)=\lambda \psi_{ \pm} \\
\psi_{+}(a)=0=\psi_{-}(-b), \\
\psi_{+}(0+)=\psi_{-}(0-), \\
\epsilon_{+} \psi_{+}^{\prime}(0+)=-\epsilon_{-} \psi_{-}^{\prime}(0-) .
\end{array}\right.
$$

Solutions

Solutions for $B_{1}^{m} \psi_{ \pm}=\lambda \psi_{ \pm}$

$$
\left\{\begin{array}{l}
\pm \epsilon_{ \pm}\left(-\psi_{ \pm}^{\prime \prime}+\tan (x) \psi_{ \pm}^{\prime}+\frac{(m \pi)^{2}}{c^{2} \cos ^{2}(x)} \psi_{ \pm}\right)=\lambda \psi_{ \pm} \\
\psi_{+}(a)=0=\psi_{-}(-b) \\
\psi_{+}(0+)=\psi_{-}(0-) \\
\epsilon_{+} \psi_{+}^{\prime}(0+)=-\epsilon_{-} \psi_{-}^{\prime}(0-)
\end{array}\right.
$$

Solution given in terms of associated Legendre $P_{\nu}^{(\mu)}, Q_{\nu}^{(\mu)}$ functions.
If we set $\lambda=0, a=b$, solution is given in terms elementary functions.

Figure: $K=1$

Figure: $K=-1$

Unitary transformation for $K=1$

$$
\begin{aligned}
U_{+1}: L^{2}\left((-b, a), \mathrm{d} x_{1}\right) & \rightarrow L^{2}\left((-b, a), \cos \left(x_{1}\right) \mathrm{d} x_{1}\right) \\
\left(U_{+1} \psi\right)(x) & :=\cos (x)^{-\frac{1}{2}} \psi(x) \\
U_{+1}^{-1} B_{1}^{m} U_{+1} & =A_{1 \mathrm{D}}+V_{+1}
\end{aligned}
$$

Figure: Multiplicative potential V_{+1}.

Properties

$$
\Longrightarrow \mathrm{B}_{1}^{m} \text { selfadjoint } \Longrightarrow B_{1}^{m} \stackrel{\mathrm{~B}_{1} \text { essentially selfadjoint },}{\longleftrightarrow U_{+1}} A_{1 \mathrm{D}}+V_{+1} .
$$

$$
B_{-1}^{m} \stackrel{U_{-1}}{\longleftrightarrow} A_{1 \mathrm{D}}+V_{-1}
$$

$\Longrightarrow B_{-1}^{m}$ selfadjoint $\Longrightarrow B_{-1}$ essentially selfadjoint,
$\Longrightarrow B_{K}$ essentially selfadjoint.

Properties

In 2D: $A_{2 \mathrm{D}}$ essentially selfadjoint Now: \checkmark

In 2D: $0 \in \sigma_{\text {ess }}\left(A_{2 \mathrm{D}}\right) \Longleftrightarrow \epsilon_{+}=\epsilon_{+}$.
Now: ? (probably)

In 2D: $\lambda=0$ is infinitely degenerate eigenvalue $\Longleftrightarrow a=b \wedge \epsilon_{+}=\epsilon_{-}$. Now: \checkmark

Proof of A_{1} self-adjointness

A_{1} is symmetric: $\left(\phi, A_{1} \psi\right)=\left(A_{1} \phi, \psi\right)$ for $\phi, \psi \in \operatorname{dom} A_{1}$.
Now for per-partes $\left(\phi \in \operatorname{dom} A_{1}^{*}, \psi \in \operatorname{dom} A_{1}\right)$ we need $\phi^{\prime}, \phi^{\prime \prime} \in \operatorname{dom} A_{1}^{*}$. For this we define restriction $\dot{A}_{1} \subset A_{1}$:

$$
\operatorname{dom} \dot{A}_{1}=\left\{\begin{array}{l|l}
\varphi=\binom{\varphi_{+}}{\varphi_{-}} \in H^{2}\left(\Omega_{+}\right) \oplus H^{2}\left(\Omega_{-}\right) & \begin{array}{l}
\varphi_{-}(-b)=0=\varphi_{+}(a), \\
\varphi_{+}(0)=0=\varphi_{-}(0), \\
\epsilon_{+} \varphi_{+}^{\prime}(0)=0=-\epsilon_{-} \varphi_{-}^{\prime}(0)
\end{array}
\end{array}\right\}
$$

then ${ }^{12}$

$$
\operatorname{dom} \dot{A}_{1}^{*}=\left\{\left.\varphi=\binom{\varphi_{+}}{\varphi_{-}} \in H^{2}\left(\Omega_{+}\right) \oplus H^{2}\left(\Omega_{-}\right) \right\rvert\, \varphi_{-}(-b)=0=\varphi_{+}(a)\right\}
$$

[^13]
Theorem

Let A be a symmetric operator on Hilbert space \mathcal{H} and $\left\{\psi_{n}\right\}_{n=0}^{\infty}$ orthonormal basis in \mathcal{H}. Then if for each $n \in \mathbb{N}$ holds: $\psi_{n} \in \operatorname{dom} A$ and there exists λ_{n} s.t. $A \psi_{n}=\lambda_{n} \psi_{n}$, then A is essentially self-adjoint. Spectrum of \bar{A} is closure $\overline{\sigma(A)}{ }^{\mathbb{R}}$ in \mathbb{R}.

References

Eohn B Pendry，Anthony J Holden，David J Robbins，and WJ Stewart． Magnetism from conductors and enhanced nonlinear phenomena．
IEEE transactions on microwave theory and techniques，47（11）：2075－2084， 1999.
睉 John B Pendry．
Negative refraction．
Contemporary Physics，45（3）：191－202， 2004.
Viktor G Veselago．
Electrodynamics of substances with simultaneously negative and．
Usp．Fiz．Nauk，92：517， 1967.
固 Amru Hussein．
Sign－indefinite second－order differential operators on finite metric graphs．
Reviews in Mathematical Physics，26（04）：1430003， 2014.
國 Filip Hložek．
Operator theoretic approach to the theory of metamaterials．
Bachelor thesis， 2014.
围 Jussi Behrndt and David Krejčirík．
An indefinite laplacian on a rectangle．
Journal d＇Analyse Mathématique，134（2）：501－522， 2018.
嗇 David Krejčirírík and Petr Siegl．
Pt－symmetric models in curved manifolds．
Journal of Physics A：Mathematical and Theoretical，43（48）：485204， 2010.

[^0]: ${ }^{1}$ John B Pendry, Anthony J Holden, David J Robbins, and WJ Stewart. Magnetism from conductors and enhanced nonlinear phenomena. IEEE transactions on microwave theory and techniques, 47(11):2075-2084, 1999.

[^1]: ${ }^{2}$ John B Pendry. Negative refraction. Contemporary Physics, 45(3):191-202, 2004. Amru Hussein.

[^2]: ${ }^{4}$ Viktor G Veselago. Electrodynamics of substances with simultaneously negative and. Usp. Fiz. Nauk, 92:517, 1967.

[^3]: ${ }^{5}$ John B Pendry. Negative refraction. Contemporary Physics, 45(3):191-202, 2004.

[^4]: ${ }^{6}$ Amru Hussein. Sign-indefinite second-order differential operators on finite metric graphs.

[^5]: ${ }^{6}$ Amru Hussein. Sign-indefinite second-order differential operators on finite metric graphs.

[^6]: ${ }^{7}$ Filip Hložek. Operator theoretic approach to the theory of metamaterials. BSc. thesis, 2014.
 ${ }^{8}$ Sabina, Zairova. Časový vývoj metamateriálových strun. BSc. thesis. České vysoké učení technické v Praze. Vypočetní a informační centrum., 2019.

[^7]: ${ }^{7}$ Filip Hložek. Operator theoretic approach to the theory of metamaterials. BSc. thesis, 2014.
 ${ }^{8}$ Sabina, Zairova. Časový vývoj metamateriálových strun. BSc. thesis. České vysoké učení technické v Praze. Vypočetní a informační centrum., 2019.

[^8]: ${ }^{7}$ Filip Hložek. Operator theoretic approach to the theory of metamaterials. BSc. thesis, 2014.
 ${ }^{8}$ Sabina, Zairova. Časový vývoj metamateriálových strun. BSc. thesis. České vysoké učení technické v Praze. Vypočetní a informační centrum., 2019.

[^9]: ${ }^{9}$ Jussi Behrndt and David Krejčiřík. An indefinite Laplacian on a rectangle. Journal d'Analyse Mathématique, 134(2):501-522, 2018.

[^10]: ${ }^{9}$ Jussi Behrndt and David Krejčiríŕk. An indefinite Laplacian on a rectangle. Journal d'Analyse Mathématique, 134(2):501-522, 2018.

[^11]: ${ }^{10}$ David Krejčiřík and Petr Siegl. $\mathcal{P} \mathcal{T}$-symmetric models in curved manifolds. Journal of Physics A: Mathematical and Theoretical, 43(48):485204, 2010.

[^12]: ${ }^{11} \mathcal{P} \mathcal{T}$-symmetric models in curved manifolds. Journal of Physics A: Mathematical and Theoretical, 43(48):485204, 2010.

[^13]: ${ }^{12}$ Kato, Tosio. Perturbation theory for linear operators. Vol. 132. Springer Science Business Media, 2013.

