Spectrum of the Ekman boundary layer problem

Based on joint work with O. Ibrogimov and P. Siegl

Borbala Gerhat
Mathematical Institute, University of Bern
mathsites.unibe.ch/gerhat
sites.google.com/view/gerhat

June 16, 2021

Outline

- introduction to physical setting
- mathematical formulation of corresponding spectral problem
- previous research
- solution of open problem in Greenberg and Marletta, 2004
- illustration on 1D Schrödinger operator
- challenges in Ekman problem

Ekman boundary layer problem - fluid dynamics

- 1893-96 Nansen (NO)
- 1902 Ekman (SE)
- model phenomena with Navier-Stokes equation
(a) EKMAN SPIRAL INTHE NORTHERN HEMISPHERE
www. offshoreengineering.com
- "Surface currents, the Ekman spiral, and Ekman transport" (Youtube, SciencePrimer)

Ekman boundary layer problem - model

Navier-Stokes equations for incompressible viscous flow in rotating frame (see e.g. Hess, Hieber, Mahalov, and Saal, 2010)

$$
\left.\begin{array}{rl}
\partial_{t} u-\nu \Delta u+\Omega e_{3} \times u+(u \cdot \nabla) u+\nabla p & =0 \\
\operatorname{div} u & =0
\end{array}\right\} \quad \nu>0, \Omega \in \mathbb{R}
$$

for velocity vector u and pressure p with boundary conditions

$$
\begin{aligned}
u\left(t, x_{1}, x_{2}, 0\right) & =(0,0,0), & & t>0, x_{1}, x_{2} \in \mathbb{R} \\
u\left(t, x_{1}, x_{2}, x_{3}\right) & \rightarrow\left(u_{\infty}, 0,0\right), & & x_{3} \rightarrow \infty, u_{\infty} \geq 0
\end{aligned}
$$

Ekman spiral (stationary solution) with $\delta=(2 \nu / \Omega)^{\frac{1}{2}}$

$$
\begin{aligned}
& u_{E}\left(x_{3}\right)=u_{\infty}\left(1-\mathrm{e}^{-x_{3} / \delta} \cos \left(x_{3} / \delta\right), \mathrm{e}^{-x_{3} / \delta} \sin \left(x_{3} / \delta\right), 0\right) \\
& p_{E}\left(x_{2}\right)=-\Omega u_{\infty} x_{2}
\end{aligned}
$$

Ekman boundary layer problem - linearisation

linearise around Ekman spiral \rightarrow linear Cauchy problem
associated spectral problem transforms to

$$
\left\{\begin{aligned}
\left(\left(-\partial^{2}+\alpha^{2}\right)^{2}+\mathrm{i} \alpha R U\left(-\partial^{2}+\alpha^{2}\right)+\mathrm{i} \alpha R V^{\prime \prime}\right) \phi+2 \partial \psi & =\lambda\left(-\partial^{2}+\alpha^{2}\right) \phi \\
2 \partial \phi+\left(\mathrm{i} \alpha R U^{\prime}+\left(-\partial^{2}+\alpha^{2}\right)+\mathrm{i} \alpha R V\right) \psi & =\lambda \psi
\end{aligned}\right.
$$

system of ODEs on \mathbb{R}_{+}with boundary conditions

$$
\begin{gathered}
\phi(0)=\phi^{\prime}(0)=\psi(0)=0 \\
\phi(\infty)=\phi^{\prime}(\infty)=\psi(\infty)=0
\end{gathered}
$$

- after transformation $u_{E} \rightarrow(U, V, 0)$
- Reynolds number $R=u_{\infty} \delta / \nu \geq 0$
- wave number $\alpha>0$

Reformulation of spectral problem

$$
\begin{aligned}
\mathcal{A} & =\left(\begin{array}{cc}
\left(-\partial^{2}+\alpha^{2}\right)^{2}+\mathrm{i} \alpha R V\left(-\partial^{2}+\alpha^{2}\right)+\mathrm{i} \alpha R V^{\prime \prime} & 2 \partial \\
2 \partial+\mathrm{i} \alpha R U^{\prime} & -\partial^{2}+\alpha^{2}+\mathrm{i} \alpha R V
\end{array}\right) \\
\mathcal{B} & =\left(\begin{array}{cc}
-\partial^{2}+\alpha^{2} & 0 \\
0 & I
\end{array}\right)
\end{aligned}
$$

family of non-self-adjoint operator matrices in $\mathcal{H}=L^{2}\left(\mathbb{R}_{+}\right) \oplus L^{2}\left(\mathbb{R}_{+}\right)$

$$
\left\{\begin{aligned}
\mathcal{T}(\lambda) & =\mathcal{A}-\lambda \mathcal{B}, \quad \lambda \in \mathbb{C} \\
\operatorname{Dom} \mathcal{T} & =\left\{\left(f_{1}, f_{2}\right) \in H^{4}\left(\mathbb{R}_{+}\right) \times H^{2}\left(\mathbb{R}_{+}\right): f_{1}(0)=f_{1}^{\prime}(0)=f_{2}(0)=0\right\}
\end{aligned}\right.
$$

with more general coefficients

$$
V, V^{\prime}, V^{\prime \prime}, U^{\prime} \in L^{1}\left(\mathbb{R}_{+}\right) \cap L^{\infty}\left(\mathbb{R}_{+}\right)
$$

question: structure and location of the spectrum

$$
\sigma(\mathcal{T})=\{\lambda \in \mathbb{C}: 0 \in \sigma(\mathcal{T}(\lambda))\}, \quad \operatorname{Re} \sigma(\mathcal{T}) \geq 0 ?
$$

Some previous research

- experiments with rotating tank (Faller, 1963)
- non-rigorous stability and spectral analysis (Lilly, 1966; Spooner, 1982)
- calculated essential spectrum non-rigorously
- numerical computations, location of eigenvalues for Ekman spiral and different α and R
- non-rigorous domain truncation
- stability analysis using PDE techniques (Giga et al., 2007; Giga and Saal, 2015; Hess, Hieber, Mahalov, and Saal, 2010)

Some previous research

- essential spectrum using singular sequences, spectral enclosure (Greenberg and Marletta, 2004)

$$
\begin{gathered}
\sigma_{\mathrm{ess}}(\mathcal{T})=\left\{\lambda \in \mathbb{C}: \exists \xi \in \mathbb{R}, p_{\lambda}(\xi)=0\right\} \\
p_{\lambda}(\xi)=\left(\xi^{2}+\alpha^{2}\right)\left(\xi^{2}+\alpha^{2}-\lambda\right)^{2}+4 \xi^{2} \\
\sigma(\mathcal{T}) \subset\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda \geq \gamma,|\operatorname{Im} \lambda| \leq \eta\}=S
\end{gathered}
$$

where γ, η depend on α, R, U, V (L^{∞}-norms)

- essential spectrum with abstract operator theoretic approach (Marletta and Tretter, 2007)

Greenberg and Marletta, 2004

red curve $\sigma_{\text {ess }}(\mathcal{T})$, yellow half-strip S

- $\mathbb{C} \backslash \sigma_{\text {ess }}(\mathcal{T})=\Omega_{+} \cup \Omega_{-}$
- eigenvalues discrete in Ω_{-}
- what happens in Ω_{+}?
- domain truncation spectrally exact if no open sets of eigenvalues exist
- justifies non-rigorous approach in Spooner, 1982 and Lilly, 1966

Main result

Theorem (G.-Ibrogimov-Siegl, 2020)
Let $\Omega=\mathbb{C} \backslash \sigma_{\text {ess }}(\mathcal{T})$, then $\sigma_{\mathrm{p}}(\mathcal{T}) \cap \Omega$
is discrete and bounded. Moreover,

$$
\begin{align*}
& \sigma_{\mathrm{p}}(\mathcal{T}) \cap \Omega \subset \\
& \quad\{\lambda \in \Omega: \alpha \operatorname{Rr}(\mathcal{Q}(\lambda)) \geq 1\} \tag{1}
\end{align*}
$$

where $\mathcal{Q}(\lambda), \lambda \in \Omega$ is a certain family of $H S$ integral operators and

$$
\mathrm{r}(\mathcal{Q}(\lambda))=\mathcal{O}\left(|\lambda|^{-\frac{1}{2}}\right), \quad \lambda \rightarrow \infty \text { in } \Omega
$$

red curve $\sigma_{\text {ess }}(\mathcal{T})$, yellow half-strip S
Greenberg and Marletta, 2004

blue enclosure (1)
(estimate in terms of α and L^{1}-norms of coefficients)

1D Schrödinger operator on \mathbb{R}_{+}with Dirichlet BC

Hilbert space $L^{2}\left(\mathbb{R}_{+}\right), \quad$ potential $V \in L^{1}\left(\mathbb{R}_{+}\right) \cap L^{\infty}\left(\mathbb{R}_{+}\right)$

$$
\left\{\begin{aligned}
& T=\underbrace{-\partial^{2}}_{=L}+V \quad \operatorname{Dom} T= \operatorname{Dom} L= \\
&\left\{f \in H^{2}\left(\mathbb{R}_{+}\right): f(0)=0\right\}
\end{aligned}\right.
$$

relatively compact perturbation

$$
\begin{gathered}
\sigma_{\mathrm{ess}}(L)=\sigma_{\mathrm{ess}}(T)=[0, \infty) \\
\sigma(T) \backslash[0, \infty) \subset \sigma_{\mathrm{p}}(T)
\end{gathered}
$$

estimating numerical range

$$
\begin{equation*}
\sigma(T) \subset\left\{\lambda \in \mathbb{C}: \operatorname{dist}(\lambda,[0, \infty)) \leq\|V\|_{L^{\infty}\left(\mathbb{R}_{+}\right)}\right\} \tag{2}
\end{equation*}
$$

1D Schrödinger: Birman-Schwinger principle

pioneering work by Abramov, Aslanyan, and Davies, 2001, developed extensively within non-self-adjoint spectral theory

- $V=V_{2} V_{1}$ with $V_{1}=|V|^{\frac{1}{2}} \in L^{2}\left(\mathbb{R}_{+}\right), V_{2}=V / V_{1} \in L^{2}\left(\mathbb{R}_{+}\right)$
- Birman-Schwinger operator

$$
Q(\lambda)=V_{1}(L-\lambda)^{-1} V_{2}, \quad \lambda \in \rho(L)=\mathbb{C} \backslash[0, \infty)
$$

- then $-1 \in \rho(Q(\lambda)) \Longleftrightarrow \lambda \in \rho(T)$ and

$$
(T-\lambda)^{-1}=(L-\lambda)^{-1}\left(I-V_{2}[I+Q(\lambda)]^{-1} V_{1}(L-\lambda)^{-1}\right)
$$

- need Green's function of unperturbed operator
- investigate when $I+Q(\lambda)$ is invertible (e.g. $\|Q(\lambda)\|<1$)

1D Schrödinger: Birman-Schwinger principle

resolvent of free Schrödinger for $\lambda \in \rho(L)=\mathbb{C} \backslash[0, \infty)$

$$
(L-\lambda)^{-1} g=\int_{\mathbb{R}_{+}} \mathcal{L}_{\lambda}(\cdot, y) g(y) \mathrm{d} y, \quad g \in L^{2}\left(\mathbb{R}_{+}\right)
$$

with $k^{2}=\lambda, \operatorname{Im} k<0$ the integral kernel reads

$$
\mathcal{L}_{\lambda}(x, y)=\mathcal{G}_{\lambda}(x-y)-\mathcal{G}_{\lambda}(x+y)=\frac{1}{2 \mathrm{i} k}\left(\mathrm{e}^{-\mathrm{i} k|x-y|}-\mathrm{e}^{-\mathrm{i} k|x+y|}\right)
$$

recall BS-operator $Q(\lambda)=V_{1}(L-\lambda)^{-1} V_{2}, \lambda \in \rho(L)$

$$
\begin{aligned}
\|Q(\lambda)\| & \leq\left\|V_{1}(x) \mathcal{L}_{\lambda}(x, y) V_{2}(y)\right\|_{L^{2}\left(\mathbb{R}_{+}^{2}\right)} \\
& \leq\left\|\mathcal{L}_{\lambda}\right\|_{L^{\infty}\left(\mathbb{R}_{+}^{2}\right)}\left\|V_{1}\right\|_{L^{2}\left(\mathbb{R}_{+}\right)}\left\|V_{2}\right\|_{L^{2}\left(\mathbb{R}_{+}\right)} \leq \frac{1}{|\lambda|^{\frac{1}{2}}}\|V\|_{L^{1}\left(\mathbb{R}_{+}\right)}
\end{aligned}
$$

1D Schrödinger: spectral enclosure

enclosure for the point spectrum

$$
\begin{equation*}
\sigma_{\mathrm{p}}(T) \backslash[0, \infty) \subset\left\{\lambda \in \mathbb{C}:|\lambda| \leq\|V\|_{L^{1}\left(\mathbb{R}_{+}\right)}^{2}\right\} \tag{3}
\end{equation*}
$$

red curve $\sigma_{\text {ess }}(T)$, yellow enclosure (2), blue enclosure (3)

Ekman spectral problem - some challenges

$$
\mathcal{H}=L^{2}\left(\mathbb{R}_{+}\right) \oplus L^{2}\left(\mathbb{R}_{+}\right), \quad V, V^{\prime}, V^{\prime \prime}, U^{\prime} \in L^{1}\left(\mathbb{R}_{+}\right) \cap L^{\infty}\left(\mathbb{R}_{+}\right)
$$

$$
\mathcal{T}(\lambda)=\overbrace{\left(\begin{array}{cc}
\left(-\partial^{2}+\alpha^{2}\right)\left(-\partial+\alpha^{2}-\lambda\right) & 2 \partial \\
2 \partial & -\partial^{2}+\alpha^{2}-\lambda
\end{array}\right)}^{=\mathcal{L}(\lambda)}
$$

$\operatorname{Dom} \mathcal{L}=\operatorname{Dom} \mathcal{V}=\operatorname{Dom} \mathcal{T}=\left\{\left(f_{1}, f_{2}\right) \in H^{4}\left(\mathbb{R}_{+}\right) \times H^{2}\left(\mathbb{R}_{+}\right):\right.$

$$
\left.f_{1}(0)=f_{1}^{\prime}(0)=f_{2}(0)=0\right\}
$$

- spectral problem for operator matrix family
- more boundary conditions to consider
- perturbation is differential operator

Ekman spectral problem - some challenges

$$
\mathcal{L}(\lambda)^{-1} G=\int_{\mathbb{R}_{+}} \mathcal{L}_{\lambda}(\cdot, y) G(y) \mathrm{d} y, \quad G \in \mathcal{H}, \lambda \in \Omega
$$

where (with $x, y \in \mathbb{R}_{+}$)

$$
\begin{array}{r}
\mathcal{L}_{\lambda}(x, y)=\left(\begin{array}{ll}
\mathcal{G}_{11}(x-y)+\mathcal{G}_{11}(x+y) & \mathcal{G}_{12}(x-y)-\mathcal{G}_{12}(x+y) \\
\mathcal{G}_{12}(x-y)+\mathcal{G}_{12}(x+y) & \mathcal{G}_{22}(x-y)-\mathcal{G}_{22}(x+y)
\end{array}\right) \\
\quad+\frac{2}{\mathcal{G}_{11}(0)}\left(\begin{array}{ll}
-\mathcal{G}_{11}(x) \mathcal{G}_{11}(y) & \mathcal{G}_{11}(x) \mathcal{G}_{12}(y) \\
-\mathcal{G}_{12}(x) \mathcal{G}_{11}(y) & \mathcal{G}_{12}(x) \mathcal{G}_{12}(y)
\end{array}\right)
\end{array}
$$

and $\mathcal{G}_{\lambda}=\left(\mathcal{G}_{i j}\right)=\mathcal{F}^{-1}\left[\mathcal{M}_{\lambda}^{-1}\right]$ with

$$
\begin{aligned}
\mathcal{M}_{\lambda}^{-1}(\xi) & =\frac{1}{p_{\lambda}(\xi)}\left(\begin{array}{cc}
\xi^{2}+\alpha^{2}-\lambda & 2 \mathrm{i} \xi \\
2 \mathrm{i} \xi & \left(\xi^{2}+\alpha^{2}\right)\left(\xi^{2}+\alpha^{2}-\lambda\right)
\end{array}\right) \\
p_{\lambda}(\xi) & =\left(\xi^{2}+\alpha^{2}\right)\left(\xi^{2}+\alpha^{2}-\lambda\right)^{2}+4 \xi^{2}
\end{aligned}
$$

Ekman spectral problem - some challenges

since $\lambda \in \Omega$ there are three roots of p_{λ} with

$$
\operatorname{Im} \mu_{j}<0, \quad j=1,2,3
$$

if no roots of p_{λ} are multiple (i.e. $\lambda \in \Omega \backslash B_{\alpha}$) then with

$$
c_{j}=\frac{1}{\left(\mu_{j}^{2}-\mu_{(j+1)_{\bmod 3}}^{2}\right)\left(\mu_{j}^{2}-\mu_{(j+2)_{\bmod 3}}\right)}
$$

the Green's function reads

$$
\begin{aligned}
& \mathcal{G}_{11}(x)=-\frac{\mathrm{i}}{2} \sum_{j=1}^{3} \frac{c_{j}}{\mu_{j}}\left(\mu_{j}^{2}+\alpha^{2}-\lambda\right) e^{-\mathrm{i} \mu_{j}|x|} \\
& \mathcal{G}_{12}(x)=\mathcal{G}_{21}(x)=\operatorname{sgn} x \sum_{j=1}^{3} c_{j} e^{-\mathrm{i} \mu_{j}|x|} \\
& \mathcal{G}_{22}(x)=-\frac{1}{2} \sum_{j=1}^{3} \frac{c_{j}}{\mu_{j}}\left(\mu_{j}^{2}+\alpha^{2}-\lambda\right)\left(\mu_{j}^{2}+\alpha^{2}\right) e^{-\mathrm{i} \mu_{j}|x|}
\end{aligned}
$$

Ekman spectral problem - some challenges

$$
\mathcal{V}_{2}=\left(\begin{array}{cc}
W_{1} & 0 \\
0 & W_{1}
\end{array}\right), \quad \mathcal{V}_{1}=\left(\begin{array}{cc}
W_{2}\left(-\partial^{2}+\alpha^{2}\right)+W_{3} & 0 \\
W_{4} & W_{2}
\end{array}\right)
$$

then $\mathcal{V}_{2} \mathcal{V}_{1}=\mathcal{V}$ and $\mathcal{Q}(\lambda)=\mathcal{V}_{1} \mathcal{L}(\lambda)^{-1} \mathcal{V}_{2}, \lambda \in \Omega$ is HS with kernel

$$
\begin{aligned}
\mathcal{Q}_{\lambda}(x, y)= & \left(\begin{array}{ll}
W_{3}(x) & 0 \\
W_{4}(x) & W_{2}(x)
\end{array}\right) \mathcal{L}_{\lambda}(x, y) W_{1}(y) \\
& \quad+W_{2}(x)\left(\begin{array}{cc}
q_{11}(x, y) & q_{12}(x, y) \\
0 & 0
\end{array}\right) W_{1}(y) \\
q_{11}(x, y)= & \mathcal{G}_{22}(x-y)+\mathcal{G}_{22}(x+y)-\frac{2}{\mathcal{G}_{11}(0)} \mathcal{G}_{22}(x) \mathcal{G}_{11}(y) \\
q_{12}(x, y) & =r_{\lambda}(x-y)-r_{\lambda}(x+y)+\frac{2}{\mathcal{G}_{11}(0)} \mathcal{G}_{22}(x) \mathcal{G}_{12}(y) \\
r_{\lambda} & =\left(-\partial^{2}+\alpha^{2}\right) \mathcal{G}_{12}
\end{aligned}
$$

Ekman spectral problem - some challenges

- norm of BS-operator not decaying

$$
\|\mathcal{Q}(\lambda)\|=\mathcal{O}(1), \quad \lambda \rightarrow \infty \text { in } \Omega
$$

- use spectral radius and similarity transform instead

$$
\mathrm{r}(\mathcal{Q}(\lambda)) \leq\|\widetilde{\mathcal{Q}}(\lambda)\|=\mathcal{O}\left(|\lambda|^{-\frac{1}{2}}\right), \quad \lambda \rightarrow \infty \text { in } \Omega
$$

$$
\|V\|_{L^{1}}^{2}|\lambda|^{-\frac{1}{2}} \geq 1 \quad \text { vs. } \quad \alpha R \operatorname{r}(\mathcal{Q}(\lambda)) \geq 1
$$

- estimate $\mathrm{r}(\mathcal{Q}(\lambda))$ by $\|\widetilde{\mathcal{Q}}(\lambda)\|_{\text {HS }}$
- simple explicit bound in terms of α, R and L^{1}-norms of coefficients blows up around B_{α}

The end

Thank you for your attention!

