Solvable models in quasi-Hermitian quantum mechanics

David Kramár

Supervisor: doc. Mgr. David Krejčirík Ph.D. DSc.

June 17, 2021
SVK - Herbertov
(1) Physical motivation
(2) The model H_{α}, its properties and known results
(3) New results

4 Strategy of the proofs

$\mathcal{P T}$-symmetric QM

Definition ($\mathcal{P T}$-symmetry)

Let $\mathcal{H}:=L^{2}\left(\mathbb{R}^{n}\right)$ be the Hilbert space, H arbitrary operator on \mathcal{H}. We say H is $\mathcal{P} \mathcal{T}$-symmetric if it satisfies

$$
[\mathcal{P} \mathcal{T}, H]=0,
$$

where $\mathcal{P} \psi(x):=\psi(-x)$ and $\mathcal{T} \psi(x):=\bar{\psi}(x)$, for all $\psi \in \mathcal{H}$ is the space-reversal and the time-reversal operator, respectively.

- Carl M. Bender and Stefan Boettcher, 1998

$$
-\frac{d^{2}}{d x^{2}}+i x^{3} \quad \text { in } \quad L^{2}(\mathbb{R})
$$

- Ali Mostafazadeh, 2002

Quasi-Hermitian QM

Definition (Metric operator)

We say positive bounded operator Θ with bounded inverse is a Metric operator for the given operator H on the space \mathcal{H} if it satisfies

$$
\Theta H=H^{*} \Theta .
$$

Such operator is then called quasi-Hermitian or quasi-self-adjoint.

- F. G. Scholtz, H. B. Geyer and F. J. W. Hahne, 1992
- For every $\Omega \in \mathcal{B}(\mathcal{H})$ such that $\Theta=\Omega^{*} \Omega$ the operator $h:=\Omega H \Omega^{-1}$ is similar to H and self-adjoint.

Theorem

Let H be an operator with purely discrete spectrum. Then H is quasi-self-adjoint, if and only if the eigenvectors of its adjoint, denoted as $\left(\phi_{n}\right)_{n=0}^{\infty}$, form a Riesz basis.

Definition (Riesz basis)

A sequence $\left(\phi_{n}\right)_{n=0}^{\infty} \subset \mathcal{H}$ is said to be Riesz basis for \mathcal{H} if it is an image of some orthonormal basis $\left(e_{n}\right)_{n=0}^{\infty}$ under bounded and boundedly invertible linear transformation T.

$$
\Theta:=\sum_{n=0}^{\infty} \phi_{n}\left(\phi_{n}, \cdot\right), \quad \Omega:=\sum_{n=0}^{\infty} e_{n}\left(\phi_{n}, \cdot\right)
$$

The model H_{α}

Given any real positive number d, we consider the Hilbert space $\mathcal{H}:=L^{2}(0, d)$ and for every $\alpha \in \mathbb{R}$ we define the operator H_{α} on the Hilbert space \mathcal{H} as

$$
\begin{align*}
& H_{\alpha} \psi:=-\psi^{\prime \prime} \quad \text { in } \quad(0, d) \tag{1}\\
& \psi^{\prime}(0)+i \alpha \psi(0)=0, \quad \psi^{\prime}(d)+i \alpha \psi(d)=0 \tag{2}
\end{align*}
$$

with its operator domain

$$
\operatorname{Dom}\left(H_{\alpha}\right):=\left\{\psi \in W^{2,2}(0, d) \mid \psi \text { satisfies }(2)\right\} .
$$

- Krejčirík, Bíla and Znojil, 2006
- For the value $\alpha=0$ and $\alpha=\infty$ we obtain (for $\alpha=\infty$ only formally) Neumann and Dirichlet Laplacian, respectively, i.e.

$$
H_{0}=-\Delta_{N}, \quad H_{\infty}=-\Delta_{D}
$$

Theorem (Krejčirík, 2008)

Metric operator for H_{α} exists, if and only if $\alpha \neq \frac{n \pi}{d}$ for all $n \in \mathbb{Z}$ and it is given as

$$
\Theta_{\alpha}=\mathbb{I}+K_{\alpha},
$$

where K_{α} is a Hilbert-Schmidt integral operator with the kernel \mathcal{K}_{α} given by

$$
\begin{aligned}
\mathcal{K}_{\alpha}(x, y)= & \phi_{0}^{\alpha}(x) \overline{\phi_{0}^{\alpha}}(y)-\frac{1}{d}+\alpha^{2} \mathcal{G}_{D}(x, y) \\
& -i \alpha\left(\frac{y-x}{d}+\operatorname{sgn}(y-x)\right) .
\end{aligned}
$$

where $\mathcal{G}_{D}:=\frac{x(d-y)}{d}$ for $0<x<y<d$, with x, y exchanged for $x>y$.

Spectral properties

- Spectrum: $\sigma\left(H_{\alpha}\right)=\left\{\alpha^{2}\right\} \cup\left\{k_{n}^{2} \mid n \in \mathbb{N}\right\}$ with $k_{n}:=\frac{n \pi}{d}$.
- Eigenfunctions: $\left(H_{\alpha}-\lambda_{n}\right) \psi_{n}^{\alpha}=0, \quad\left(H_{\alpha}^{*}-\lambda_{n}\right) \phi_{n}^{\alpha}=0$

$$
\begin{array}{ll}
\psi_{0}^{\alpha}(x)=A_{0} \mathrm{e}^{-i \alpha x}, & \psi_{n}^{\alpha}(x)=A_{n}\left(\psi_{n}^{N}(x)-i \frac{\alpha}{k_{n}} \psi_{n}^{D}(x)\right), \\
\phi_{0}^{\alpha}(x)=B_{0} \mathrm{e}^{i \alpha x}, & \phi_{n}^{\alpha}(x)=B_{n}\left(\psi_{n}^{N}(x)+i \frac{\alpha}{k_{n}} \psi_{n}^{D}(x)\right),
\end{array}
$$

where

$$
\psi_{n}^{N}(x):=\sqrt{\frac{2}{d}} \cos \left(k_{n} x\right), \quad \psi_{n}^{D}(x):=\sqrt{\frac{2}{d}} \sin \left(k_{n} x\right)
$$

- Generalized eigenfunctions:

$$
\begin{array}{ll}
\left(H_{\alpha}-\lambda_{n}\right) \xi_{n}^{\alpha}=\lambda_{n} \psi_{n}^{\alpha}: & \xi_{m}^{\alpha}:=A_{0} \frac{1}{2 k_{m}}\left(-\frac{1}{2 k_{m}} \mathrm{e}^{i k_{m} x}+i x \mathrm{e}^{-i k_{m} x}\right), \\
\left(H_{\alpha}^{*}-\lambda_{n}\right) \eta_{n}^{\alpha}=\lambda_{n} \psi_{n}^{\alpha}: & \eta_{m}^{\alpha}:=B_{0} \frac{1}{2 k_{m}}\left(-\frac{1}{2 k_{m}} \mathrm{e}^{-i k_{m} x}-i x \mathrm{e}^{i k_{m} x}\right) .
\end{array}
$$

- Exists only if $\alpha=k_{m}$ for some $m \in \mathbb{N}$.

Theorem (Krejčirík, Siegl and Železný 2014)

For all $\alpha \in \mathbb{R}$, eigenfunctions of H_{α}^{*} together with generalized eigenfunctions of H_{α}^{*} form a Bari basis.

Definition (Bari basis)

A sequence $\left(\phi_{n}\right)_{n=0}^{\infty} \subset \mathcal{H}$ is said to be a Bari basis for \mathcal{H} if there is an orthonormal basis $\left(e_{n}\right)_{n=0}^{\infty}$ such that

$$
r^{2}:=\sum_{n=0}^{\infty}\left\|\phi_{n}-e_{n}\right\|^{2}<\infty
$$

and for every complex sequence $\left(\alpha_{n}\right)_{n=0}^{\infty} \subset \mathbb{C}$

$$
\sum_{n=0}^{\infty} \alpha_{n} \phi_{n}=0 \Rightarrow \alpha_{n}=0, \forall n \in \mathbb{N}_{0}
$$

Theorem (Krejčirík, Siegl and Železný, 2014)

Let $\alpha \neq \frac{n \pi}{d}$ for every $n \in \mathbb{Z}$. Then there exists $\Omega \in \mathcal{B}(\mathcal{H})$ such that $\Omega^{-1} \in \mathcal{B}(\mathcal{H})$ and the transformed operator $h_{\alpha}:=\Omega H_{\alpha} \Omega^{-1}$ satisfies

$$
h_{\alpha}:=H_{0}+\alpha^{2} \psi_{0}^{N}\left(\psi_{0}^{N}, \cdot\right) \quad \text { with } \quad \psi_{0}^{N}(x):=\sqrt{\frac{1}{d}} .
$$

- $\Omega: \psi_{n}^{\alpha} \mapsto \psi_{n}^{N}: \sum_{n=0}^{\infty} \psi_{n}^{N}\left(\phi_{n}, \cdot\right)$

New results

Theorem (Similar self-adjoint operator corresponding to the Dirichlet basis)

Let $\alpha \neq k_{n}$ for every $n \in \mathbb{Z}$. Then there exists $\Omega_{D} \in \mathcal{B}(\mathcal{H})$ such that $\Omega_{D}^{-1} \in \mathcal{B}(\mathcal{H})$ and the transformed operator $h_{\alpha}^{D}:=\Omega_{D} H_{\alpha} \Omega_{D}^{-1}$ satisfies

$$
h_{\alpha}^{D}=\left[\left(-\Delta_{D}\right)^{\frac{1}{2}}-k_{1}\right]^{2}+\alpha^{2} \psi_{1}^{D}\left(\psi_{1}^{D}, \cdot\right) .
$$

New results

Theorem (Similar operator for the exceptional points)

Let $\alpha=k_{n}$ for some $n \in \mathbb{Z}$. Then there exist $\tilde{\Omega}, \tilde{\Omega}_{D} \in \mathcal{B}(\mathcal{H})$ such that $\tilde{\Omega}^{-1}, \tilde{\Omega}_{D}^{-1} \in \mathcal{B}(\mathcal{H})$ and the transformed operators $h_{\alpha}:=\tilde{\Omega} H_{\alpha} \tilde{\Omega}^{-1}$ and $h_{\alpha}^{D}:=\tilde{\Omega}_{D} H_{\alpha} \tilde{\Omega}_{D}^{-1}$ satisfy

$$
\begin{aligned}
& h_{\alpha}=H_{0}+\alpha^{2} \psi_{0}^{N}\left[\left(\psi_{0}^{N}, \cdot\right)+\left(\psi_{n}^{N}, \cdot\right)\right] \\
& h_{\alpha}^{D}=\left[\left(-\Delta_{D}\right)^{\frac{1}{2}}-k_{1}\right]^{2}+\alpha^{2} \psi_{1}^{D}\left[\left(\psi_{1}^{D}, \cdot\right)+\left(\psi_{n}^{D}, \cdot\right)\right]
\end{aligned}
$$

- For the Neumann orthonormal basis $\left(\psi_{n}^{N}\right)_{n=0}^{\infty}$ we define
$\Omega:=\sum_{n=0}^{\infty} \psi_{n}^{N}\left(\phi_{n}^{\alpha}, \cdot\right)$ with $\alpha=k_{m}$ for some $m \in \mathbb{N}$. Then
$\Omega^{-1}=\sum_{n=2}^{\infty} \psi_{\sigma(n)}^{\alpha}\left(\psi_{\sigma(n)}^{N}, \cdot\right)+\psi_{m}^{\alpha}\left(\psi_{0}^{N}, \cdot\right)+\psi_{0}^{\alpha}\left(\psi_{m}^{N}, \cdot\right)-\psi_{m}^{\alpha}\left(\psi_{m}^{N}, \cdot\right)$,
$\Omega^{*}=\sum_{n=0}^{\infty} \phi_{n}^{\alpha}\left(\psi_{n}^{N}, \cdot\right)$,
where $\sigma: \mathbb{N}_{0} \mapsto \mathbb{N}_{0}$ is a transposition of elements 1 and m.
- Further we introduce the unitary operator

$$
U:=\sum_{n=0}^{\infty} \psi_{n+1}^{D}\left(\psi_{n}^{N}, \cdot\right): \psi_{n} \mapsto \psi_{n+1}^{D}
$$

H_{α} in the Dirichlet basis

$$
\begin{aligned}
h_{\alpha}^{D}= & \Omega_{D} H_{\alpha}\left(\Omega_{D}\right)^{-1}=U \Omega_{N} H_{\alpha}\left(\Omega_{N}\right)^{-1} U^{-1} \\
= & U\left(-\Delta_{N}\right) U^{-1}+\alpha^{2} U \psi_{0}^{N}\left(\psi_{0}^{N}, U^{-1} \cdot\right) \\
= & \sum_{n=0}^{\infty} k_{n}^{2} \psi_{n+1}^{D}\left(\psi_{n+1}^{D}, \cdot\right)+\alpha^{2} \psi_{1}^{D}\left(\psi_{1}^{D}, \cdot\right) \\
= & \sum_{n=1}^{\infty} k_{n-1}^{2} \psi_{n}^{D}\left(\psi_{n}^{D}, \cdot\right)+\alpha^{2} \psi_{1}^{D}\left(\psi_{1}^{D}, \cdot\right) \\
= & \sum_{n=1}^{\infty} k_{n}^{2} \psi_{n}^{D}\left(\psi_{n}^{D}, \cdot\right)-2 k_{1} \sum_{n=1}^{\infty} k_{n} \psi_{n}^{D}\left(\psi_{n}^{D}, \cdot\right)+k_{1}^{2} \sum_{n=1}^{\infty} \psi_{n}^{D}\left(\psi_{n}^{D} \cdot \cdot\right) \\
& \quad+\alpha^{2} \psi_{1}^{D}\left(\psi_{1}^{D}, \cdot\right) \\
= & {\left[\left(-\Delta_{D}\right)^{\frac{1}{2}}-k_{1} \mathbb{I}\right]^{2}+\alpha^{2} \psi_{1}^{D}\left(\psi_{1}^{D}, \cdot\right) }
\end{aligned}
$$

Degenerate spectrum

- Let $\alpha=k_{m}$ for some $m \in \mathbb{N}$, then for $\phi, \psi \in \operatorname{Dom}\left(-\Delta_{N}\right)$ we have

$$
\begin{aligned}
\left(\phi, h_{\alpha} \psi\right)= & \left(\phi, \tilde{\Omega} H_{m} \tilde{\Omega}^{-1} \psi\right)= \\
= & \lim _{l \rightarrow \infty}\left(H_{m}^{*} \tilde{\Omega}^{*} \phi, \sum_{n=2}^{1} \psi_{\sigma(n)}^{\alpha}\left(\psi_{\sigma(n)}^{N}, \psi\right)+\psi_{m}^{\alpha}\left(\psi_{0}^{N}, \psi\right)\right. \\
& \left.\quad+\psi_{0}^{\alpha}\left(\psi_{m}^{N}, \psi\right)-\psi_{m}^{\alpha}\left(\psi_{m}^{N}, \psi\right)\right) \\
& \ldots \\
= & \left(\phi,\left(-\Delta_{N}\right) \psi+k_{m}^{2} \psi_{0}^{N}\left[\left(\psi_{0}^{N}, \psi\right)+\left(\psi_{m}^{N}, \psi\right)\right]\right) .
\end{aligned}
$$

