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Domain truncation for T =

Figure: Real part of the spectrum of T, Figure: Imaginary part of the spectrum
truncated to L?((—sn,sn)) of T, truncated to L2((—sn, sn))

@ Bender, Boetcher 1998 [3]: introduction of the problem, real spectra
d2
S dx?

o Boegli, Siegl, Tretter 2017 [4] - domain truncations is spectrally exact

+@x)Y, N>2

o Giinther, Stefani 2019 [9]: description of diverging eigenvalues for
N =2k — 1,k € N (analytic WKB and Stokes graph analysis).
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Brown, Marletta 2004 [5]: truncation of 2D radial potential

T=—-Ap+ (143)(x*+y°), on [*(R*\B)
To=—0p+(1+31)( +y°), on L*(B, \Bi)

Figure: Imaginary part of the spectrum
Figure: Real part of the spectrum of T, of T,
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Decomposed to 1D problems

2 l2
Tn,:_i_%%+(l+3i)r2+ﬁ, refl,s,], leN

20
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Enhanced dissipation: T, = —<; + x? + igf(x) on L?(R)

o fluid mechanics, behaviour of inf Re())

o Gallagher, Gallay, Nier 2009 [8], Schenker 2011 [10]:
f(x) = k>0

_ 1
1+|x|~

Figure: Real part of the spectrum of T, Figure: Imaginary part of the spectrum

for f(x) = ﬁ with k = 3.15 of Ty for f(x) = ﬁ with k = 3.15
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PT-symmetric phase transition

@ Baker, Mityagin (2020) [1]:

i + x> +1ig(8(x — b) — &(x + b))

S dx?
o Caliceti, Graffi (2014) [6]:
2 M M—1

7dX2 M gm, gE(C, M:2,4,6,...

Im(A,)

Figure: Real part of the spectrum for Figure: Imaginary part of the spectrum
g=ig,M=2 for g =ig,M =2
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How to describe such diverging eigenvalues?
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Example of transformations: T = — i acting in L?(R)

@ Domain truncation (spectrally exact approximation of T)

2

To= 340, Dom(T,) = {f € W2*(=n,n): f(:n) = 0}

!ldea from Beauchard, Helffer, Henry, Robbiano 2015 [2]
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Example of transformations: T = —-, 1 ix3 | acting in L?(R)

@ Domain truncation (spectrally exact approximation of T)
2

To=——
dx?

+ix>, Dom(T,) = {f € W>*(=n,n) : f(£n) = 0}
o Translation! x — x — n, unitary op. (Nf)(x) = f(x — n)

2

S dx?

NTN =T, = +i(x —n)®, acting in L*((0,2n))

!ldea from Beauchard, Helffer, Henry, Robbiano 2015 [2]
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Example of transformations: T = —-, 1 ix3 | acting in L?(R)

@ Domain truncation (spectrally exact approximation of T)
2

T, =— ]

+ix>, Dom(T,) = {f € W>*(=n,n) : f(£n) = 0}

o Translation! x — x — n, unitary op. (Nf)(x) = f(x — n)

2

NTN ' =T, = —% +i(x—n)*, acting in L*((0,2n))

@ Scaling x — n®y unitary op.,
R L2((0,2n)) — L2((0,2n*)) : f(x) = n=*/2f(xn~%)

2

R—'i—nR—l _ nQa dd > + l(n5a 3 —3n 4a+1y2 + 3n3a+2y _ n2a+3)

!ldea from Beauchard, Helffer, Henry, Robbiano 2015 [2]
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S,=n"? [Sn - in5/3} , acting in L2((0,2n"?))

where )

a7t 3iy +in 03y —3in7%/3)2

S, =
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@ Choice of a« = —2/3
S,=n"? [Sn - in5/3} , acting in L2((0,2n"?))

where )

d - + 3iy +in~ 10/3y3—3in75/3y2

Sn =
@ S, converges to the Airy operator on half-line
d2
S= “art 3iy , Dom(S) = {f € W**(R"): xf € L*(R"), f(0) = 0}

0(S) = {Vk}ken => Vi + ficn € 0(Sn),Vn > ny
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@ Choice of a« = —2/3
S,=n"? [Sn - in5/3} , acting in L2((0,2n"?))

where )

a2 +3iy +in 13y —3in /32

Sp=—

@ S, converges to the Airy operator on half-line

d2
S=-gz T3 Dom(S) = {f € W*?*(R") : xf € L*(R"), £(0) = 0}

0(S) = {Vk}ken => Vi + ficn € 0(Sn),Vn > ny

o EVS of T, as T, = N 'R n*3(S, — in®})INR
Nen = 0** (i + rin fin5/3), as n — 0o
N —

€0(Sn)
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@ Choice of a« = —2/3
S,=n"? [Sn - in5/3} , acting in L2((0,2n"?))

where )

4y - + 3iy +in~ 10/3y3—3in75/3y2

Sn=—

@ S, converges to the Airy operator on half-line

2

d
5= ~47 +3iy, Dom(S) = {f € W**(R") : xf € L*(R"), f(0) = 0}

0(S) = {Vk}ken => Vi + ficn € 0(Sn),Vn > ny

o EVS of Ty: as T, = N 'R n*3(S, — in®})INR

Nen = 0** (i + rin fin5/3), as n — 0o
———

€0 (Sn)

convergence of isolated eigenvalues of S, — S7?
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@ domains {Q,}nen- C R? are open and non-empty, Q. is unbounded and
(not necessarily bounded) domains {€,} C Q. exhaust Qs as n — oo;
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@ domains {Q,}nen- C R? are open and non-empty, Q. is unbounded and
(not necessarily bounded) domains {€,} C Q. exhaust Qs as n — oo;

@ potentials Q, € VVlf)C‘x’(Qn) with Re Q, > 0, n € N*, satisfy uniformly
Jey €0, i), IMy >0, Vn €N, [VQo| < ev|Qul? + My ae. in Q,,
(1)
For self-adjoint case ecir = 2 (Everitt, Giertz 1978 [7]) . For
non-self-adjoint case eqie € [2 — v/2,2], where 2 — /2 ~ 0.5857 ;
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Assumption

Suppose that

@ domains {Q,}nen- C R? are open and non-empty, Q. is unbounded and
(not necessarily bounded) domains {€,} C Q. exhaust Qs as n — oo;

@ potentials Q, € VV&)C‘X’(QH) with Re Q, > 0, n € N*, satisfy uniformly
Jey €0, i), IMy >0, Vn €N, [VQo| < ev|Qul? + My ae. in Q,,
(1)
For self-adjoint case ecir = 2 (Everitt, Giertz 1978 [7]) . For
non-self-adjoint case eqie € [2 — v/2,2], where 2 — /2 ~ 0.5857 ;
© operators T, = —A + @, in L*(Q,) are introduced via quadratic forms t,,
n € N* and cut-offs {&n}nen, &n 1 Qoo — [0,1], xa,(x)én(X) = &n(x) are
such that
Sgg(lllvin\llm + [|A&n]|Le) < oco. (2)

Furthermore
Vf, € Dom(T,), &nfs € Dom(tes),

Vg € Dom(T), &ng € Dom(tn); ®
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© potentials {Q,} converge in the following sense

H n(Qn — Q)
@+ 1)(Q +1)

el e

Lo°(Q00)
=o(1), n— oo,
(4)
where
= Xawpey G =1-E neEN. (%)
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Example

Sequence of potentials
Qu(x,y) =i +y%) + Wa(x,y), |[Wall= —0asn— o

and domains
Qo ={(x,y) 1y <x,—y <x,x €(0,n)}
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Theorem

© {T.} converge to To in the generalized norm resolvent sense (and hence
there is no spectral pollution): for every z € p(Tw), there is n; > 0 such
that z € p(T,), n > n, and

I(To = 2) X0, = (Too = 2) lsuzuy = O=(ma), n—o00;  (6)
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Theorem

© {T.} converge to To in the generalized norm resolvent sense (and hence
there is no spectral pollution): for every z € p(Tw), there is n; > 0 such
that z € p(T,), n > n, and

I(To = 2) X0, = (Too = 2) lsuzuy = O=(ma), n—o00;  (6)

@ spectral projections converge in norm:
1En — Eillsz(@uy) = Ok(n),  n— oo (7)

where

- 1 -1
o ¥ AR O REDIRVEPLY [CR A et
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Theorem

@ spectral inclusion for isolated eigenvalues: for every vk € caisc(Too), as
n — 0o, there are eigenvalues vy, of T, in a neighborhood of v, and (for
simple eigenvalues)

‘l/k - Vk,nl = Ok (Kn) ) n— oo, (8)
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Theorem

@ spectral inclusion for isolated eigenvalues: for every vk € caisc(Too), as
n — 0o, there are eigenvalues vy, of T, in a neighborhood of v, and (for
simple eigenvalues)

‘l/k - Vk,nl = Ok (Kn) ) n— oo, (8)

© (generalized) eigenvectors converge in norm: for every 1) € Ran(Ex) as
n— oo

l¥ — Ei,npll = Ok (kn), n— oo. (9)

where

n( Qn Qxc)

I L ™
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Application of the theorem to the domain truncation

Boegli, Siegl, Tretter 2017 [4]:

proved spectral exactness of domain truncation technique on RY and exterior
domains for wide classes of complex potentials, of approximating domains €2,
and of boundary conditions on 92, such as mixed Dirichlet/Robin type.

New results:
@ perturbed potential/sequence of potentials
@ broader class of unbounded limit domains Q.. (e.g. cone)
@ Q, can be unbounded, T with non-compact resolvent (e.g.
Q, = (—o0, n), Q(x) = ie)

@ rate of convergence for resolvents
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Mo = @)+ Ou(s ™) —ist, - A2 = X0
where v, = e72”i/3uk, Ai(uk) =0

Re(A,)

Figure: Imaginary part of spectrum,

Figure: Real part of spectrum, real part imaginary part of first 5 asymptotic
of first 5 asymptotic curves /\5(131, )\5321 curves )\5(1’),1, /\5(231
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Rate of the convergence

. _2 -%
In complex plane are shown: red dots v, and blue dots (A, + i52)37 3, 3

10
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T=-—9 1ieXon L*(R)

~ dx

Eigenvalues lying asymptotically in the spectra of truncated operators T,

Men = €53 (i + Ok(e=/3)) + ie”

Re(An) Im(A,)
100 et e e 80

80
60

60
40
40

20
20

Figure: Real part of spectrum Figure: Imaginary part of spectrum
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Radially symmetric potential on annuli - Brown, Marletta (2004)

T =—Ap+ilx]>, on L*(R?\ Bi(0))
truncated and decomposed to 1D problems

2 — — J—
Tn/:fd—+ir2+(d )(d-=3)/4+1(1+d 2)7
’ dr? r2

_4
Akyn,l = (25n)% (VT-F Ok, <5n 3)) +is?, n— oo;

Im(A,)
00,

in Lz((l,sn))

Re(A,)

Figure: Real part of spectrum of T, for Figure: Imaginary part of spectrum of
d=3and | =1,2,34,5 Tpford=3and /=1,2,3,45
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Higher dimensions

@ In 1D assumptions in a form of explicit conditions on Q(x). In higher
dimension we have to check the assumptions of the abstract theorem.
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Higher dimensions

@ In 1D assumptions in a form of explicit conditions on Q(x). In higher
dimension we have to check the assumptions of the abstract theorem.

@ 2D rotated squares and polynomial potential
Qlx,y) =i’ +y ) +x°*, xy€eR

and a sequence of /4 rotated squares €,. Then spectra of T, contain
asymptotically the eigenvalues

)\g)n = (355)% (uk + p(j’)n) —is3, n— oo,

where {vi} are eigenvalues of the complex Airy operator in a sector

Sa:=—-A+ix, Dom(Sa):=Dom(Ap) N Dom(|x]),
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Schenker [10]:

Re(X) > Clg[*/**")

Our result (optimality)

2
Mg =877 (VK + i) +ig

a2

where vk € 0(Tk), T = — 37 —i|x|"

o % w 5 w0 9

Figure: Real part of spectrum of Tg for
Kk =3.15

im(A,)

Figure: Imaginary part of spectrum of
Tg for k =3.15
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Baker, Mityagin (2020): T, =

+ x2 +ig(d(x — b) — 6(x + b))

dx2

@ proved that the number of non-real eigenvalues diverges as g — oo
@ "smooth” version of BM potential

2

— 1 X +iede ~in I2(R) (11)

T =
@ stationary points xo =0, x1 = —\/g and o = —x1

04

02

-4
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@ stationary point xp
X( 2 _56
N9 = gd (i +Oule®)), g — +ox, (12)
where v are eigenvalues of imaginary cubic oscillator.
@ stationary points xi, x2

X- = —= . — 5 3 X X
N2 = g2+ Oulg™8)) —ig(2e) 2 + 5, M2 =AY g +oo,

k.g

(13)
where v, = (%)%ei%(Zk +1), k € Ny,

Im(A,)

Figure: Imaginary part of the spectrum
Figure: Real part of the spectrum of Ty of Ty
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Caliceti, Graffi (2014)

studied PT-symmetric phase transitions for a class of operators in L*(R)

2 M M—1
ﬁ+2M+lgM B M € 2N (14)
rescale x — g?M/(M+x to obtain

1 d2 ) X2M XMfl
= AR AT, 1
o { Era (2/\/1“/\4-1) (15)
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Caliceti, Graffi (2014)

studied PT-symmetric phase transitions for a class of operators in L*(R)
42 2M M—1
X 1igX  MeoN (14)

rescale x — g?M/(M+x to obtain

1 d2 X2M ) XMfl
2 {‘@WZ (W*‘W_l)} (15)

g M+1

. . . iz u
M = 2 case: stationary points xo =0, x1 =1, xo =€'6” and x3 =¢'6 "
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ol

g
Wi

>
5

>
&

x 31 _
Ny = \/;g3 (vk + Ok(g

where v, = €% (2k + 1), k € No,

Re(A,)
-

)+ o

Figure: Real part of the spectrum Figure: Imaginary part of the spectrum



Application - Diverging eigenvalues
00000000000 e00

stationary point xo = 0 yields sequences of eigenvalues

_ 2 _ 2
NS =g T (v + O 1)), g = +oo, (16)
. —1
. - . 157737
multiple complex stationary points xx = e 2Mi0" k=1 ... M+1
. . 104
0.5
05F
70‘5 0‘5
1.0 (;5 0.5 1.0

Figure: Stationary points for M = 4 Figure: Stationary points for M = 6



Application - Diverging eigenvalues
000000000000 ee

@ BAKER, C., AND MITYAGIN, B.
Non-real eigenvalues of the harmonic oscillator perturbed by an odd, two-point interaction.
J. Math. Phys 61, 4 (2020), 043505.

@ BEAUCHARD, K., HELFFER, B., HENRY, R., AND ROBBIANO, L.
Degenerate parabolic operators of Kolmogorov type with a geometric control condition.
ESAIM Control Optim. Calc. Var. 21, 2 (2015), 487-512.

@ BENDER, C. M., AND BOETTCHER, S.
Real Spectra in Non-Hermitian Hamiltonians Having P77 Symmetry.
Phys. Rev. Lett. 80 (1998), 5243-5246.

@ BocL, S., SIEGL, P., AND TRETTER, C.
Approximations of spectra of Schrédinger operators with complex potential on RY.
Comm. Partial Differential Equations 42 (2017), 1001-1041.

@ BrowN, B. M., AND MARLETTA, M.

Spectral inclusion and spectral exactness for PDEs on exterior domains.
IMA J. Numer. Anal. 24 (2004), 21-43.



Application - Diverging eigenvalues
000000000000 ee

erences ||

@ CALICETI, E., AND GRAFFI, S.

An existence criterion for the PT-symmetric phase transition.
Discrete Contin. Dyn. Syst. Ser. B 19 (2014), 1955-1967.

@ EveriTT, W. N., AND GIERTZ, M.
Inequalities and separation for Schrédinger type operators in L>(R").
Proc. Roy. Soc. Edinburgh Sect. A 79 (1978), 257-265.
@ GALLAGHER, I., GALLAY, T., AND NIER, F.
Spectral Asymptotics for Large Skew-Symmetric Perturbations of the Harmonic Oscillator.
Int. Math. Res. Not. 2009 (2009), 2147-2199
@ GUENTHER, U., AND STEFANI, F.
IR-truncated P7T -symmetric ix> model and its asymptotic spectral scaling graph.
arXiv preprint arXiv:1901.08526 (2019).
@ SCHENKER, J. H.

Estimating complex eigenvalues of non-self adjoint Schrddinger operators via complex
dilations.

Math. Res. Lett. 18 (2011), 755-765.



	Motivation
	Main Result
	Application - Diverging eigenvalues

	anm1: 
	1.81: 
	1.80: 
	1.79: 
	1.78: 
	1.77: 
	1.76: 
	1.75: 
	1.74: 
	1.73: 
	1.72: 
	1.71: 
	1.70: 
	1.69: 
	1.68: 
	1.67: 
	1.66: 
	1.65: 
	1.64: 
	1.63: 
	1.62: 
	1.61: 
	1.60: 
	1.59: 
	1.58: 
	1.57: 
	1.56: 
	1.55: 
	1.54: 
	1.53: 
	1.52: 
	1.51: 
	1.50: 
	1.49: 
	1.48: 
	1.47: 
	1.46: 
	1.45: 
	1.44: 
	1.43: 
	1.42: 
	1.41: 
	1.40: 
	1.39: 
	1.38: 
	1.37: 
	1.36: 
	1.35: 
	1.34: 
	1.33: 
	1.32: 
	1.31: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


