Clifford's Geometric Algebra in Differential Geometry

Šimon Vedl

FNSPE CTU in Prague
22nd June 2021

Matrix Clifford Algebras

Two well-known matrix algebras

- The Pauli Algebra

$$
\left\{\sigma_{i}, \sigma_{j}\right\}=\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}=2 \delta_{i j}
$$

Matrix Clifford Algebras

Two well-known matrix algebras

- The Pauli Algebra

$$
\left\{\sigma_{i}, \sigma_{j}\right\}=\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}=2 \delta_{i j}
$$

- The Dirac Algebra

$$
\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 \eta_{\mu \nu}
$$

Free tensor algebra

Definition

Let V be a vector space over field \mathbb{F}. For every $k \in \mathbb{N}$ we define the k-th tensor power of V as

$$
T^{k}(V)=V \otimes V \otimes \ldots \otimes V
$$

and we define $T^{0}(V)=\mathbb{F}$.

Definition

Let V be a vector space over field \mathbb{F}. For every $k \in \mathbb{N}$ we define the k-th tensor power of V as

$$
T^{k}(V)=V \otimes V \otimes \ldots \otimes V
$$

and we define $T^{0}(V)=\mathbb{F}$.
We also define the operation $\otimes_{k, l}: T^{k}(V) \times T^{l}(V) \rightarrow T^{k+l}(V)$
$\left(v_{1} \otimes \ldots \otimes v_{k}\right) \otimes_{k, l}\left(w_{1} \otimes \ldots \otimes w_{l}\right)=v_{1} \otimes \ldots \otimes v_{k} \otimes w_{1} \otimes \ldots \otimes w_{l}$,

Definition

Let V be a vector space over field \mathbb{F}. For every $k \in \mathbb{N}$ we define the k-th tensor power of V as

$$
T^{k}(V)=V \otimes V \otimes \ldots \otimes V
$$

and we define $T^{0}(V)=\mathbb{F}$.
We also define the operation $\otimes_{k, l}: T^{k}(V) \times T^{l}(V) \rightarrow T^{k+l}(V)$
$\left(v_{1} \otimes \ldots \otimes v_{k}\right) \otimes_{k, l}\left(w_{1} \otimes \ldots \otimes w_{l}\right)=v_{1} \otimes \ldots \otimes v_{k} \otimes w_{1} \otimes \ldots \otimes w_{l}$,
For scalars: $\lambda \otimes_{0, k} t=\lambda t=t \otimes_{k, 0} \lambda$

Definition

The free tensor algebra of a vector space over field \mathbb{F} is the direct sum

$$
T(V)=\bigoplus_{k=0}^{\infty} T^{k}(V)
$$

equipped with associative multiplication \otimes that is obtained from $\otimes_{k, l}$ via linear extension.

Quotient algebra

Definition

Let \mathcal{J} be a subspace of $T(V)$ such that

$$
\forall j \in \mathcal{J}, \forall t, t^{\prime} \in T(V): t \otimes j \otimes t^{\prime} \in \mathcal{J}
$$

Then we call \mathcal{J} an ideal of $T(V)$

Quotient algebra

Definition

Let \mathcal{J} be a subspace of $T(V)$ such that

$$
\forall j \in \mathcal{J}, \forall t, t^{\prime} \in T(V): t \otimes j \otimes t^{\prime} \in \mathcal{J}
$$

Then we call \mathcal{J} an ideal of $T(V)$

Definition

For S subset of $T(V)$ we define $\langle S\rangle$ to be the smallest ideal of $T(V)$ containing S.

Quotient algebra

Definition

Let \mathcal{J} be a subspace of $T(V)$ such that

$$
\forall j \in \mathcal{J}, \forall t, t^{\prime} \in T(V): t \otimes j \otimes t^{\prime} \in \mathcal{J}
$$

Then we call \mathcal{J} an ideal of $T(V)$

Definition

For S subset of $T(V)$ we define $\langle S\rangle$ to be the smallest ideal of $T(V)$ containing S.

The quotient space $T(V) / \mathcal{J}$ can be equipped with multiplication

$$
[t] \cdot\left[t^{\prime}\right]=\left[t \otimes t^{\prime}\right]
$$

consistently. $(T(V) / \mathcal{J}, \cdot)$ is the quotient algebra of $T(V)$.

Clifford algebra

Definition

Let V be a finite-dimensional real vector space equipped with a non-degenerate quadratic form Q. The Clifford algebra $C l(V, Q)$ is the quotient algebra of $T(V)$ given by an ideal

$$
\mathcal{J}=\left\langle\left\{v \otimes v-Q(v) \mid v \in T^{1}(V) \equiv V\right\}\right\rangle .
$$

Clifford algebra

Definition

Let V be a finite-dimensional real vector space equipped with a non-degenerate quadratic form Q. The Clifford algebra $C l(V, Q)$ is the quotient algebra of $T(V)$ given by an ideal

$$
\mathcal{J}=\left\langle\left\{v \otimes v-Q(v) \mid v \in T^{1}(V) \equiv V\right\}\right\rangle .
$$

- Associative

Clifford algebra

Definition

Let V be a finite-dimensional real vector space equipped with a non-degenerate quadratic form Q. The Clifford algebra $C l(V, Q)$ is the quotient algebra of $T(V)$ given by an ideal

$$
\mathcal{J}=\left\langle\left\{v \otimes v-Q(v) \mid v \in T^{1}(V) \equiv V\right\}\right\rangle .
$$

- Associative
- Distributive over addition

Clifford algebra

Definition

Let V be a finite-dimensional real vector space equipped with a non-degenerate quadratic form Q. The Clifford algebra $C l(V, Q)$ is the quotient algebra of $T(V)$ given by an ideal

$$
\mathcal{J}=\left\langle\left\{v \otimes v-Q(v) \mid v \in T^{1}(V) \equiv V\right\}\right\rangle .
$$

- Associative
- Distributive over addition
- Square of a vector is a scalar

Clifford algebra

Definition

Let V be a finite-dimensional real vector space equipped with a non-degenerate quadratic form Q. The Clifford algebra $C l(V, Q)$ is the quotient algebra of $T(V)$ given by an ideal

$$
\mathcal{J}=\left\langle\left\{v \otimes v-Q(v) \mid v \in T^{1}(V) \equiv V\right\}\right\rangle .
$$

- Associative
- Distributive over addition
- Square of a vector is a scalar
- Finite-dimensional

Derived products

For vectors we define the inner and outer product

For vectors we define the inner and outer product

$$
a \cdot b=\frac{1}{2}(a b+b a)
$$

For vectors we define the inner and outer product

$$
\begin{aligned}
& a \cdot b=\frac{1}{2}(a b+b a) \\
& a \wedge b=\frac{1}{2}(a b-b a)
\end{aligned}
$$

For vectors we define the inner and outer product

$$
\begin{gathered}
a \cdot b=\frac{1}{2}(a b+b a) \\
a \wedge b=\frac{1}{2}(a b-b a) \\
a_{1} \wedge a_{2} \wedge \ldots \wedge a_{p}=\frac{1}{p!} \sum_{\pi \in S_{p}} \operatorname{sgn}(\pi) a_{\pi(1)} a_{\pi(2)} \ldots a_{\pi(p)}
\end{gathered}
$$

For vectors we define the inner and outer product

$$
\begin{gathered}
a \cdot b=\frac{1}{2}(a b+b a) \\
a \wedge b=\frac{1}{2}(a b-b a) \\
a_{1} \wedge a_{2} \wedge \ldots \wedge a_{p}=\frac{1}{p!} \sum_{\pi \in S_{p}} \operatorname{sgn}(\pi) a_{\pi(1)} a_{\pi(2)} \ldots a_{\pi(p)}
\end{gathered}
$$

For general multivectors we also define the commutator product

For vectors we define the inner and outer product

$$
\begin{gathered}
a \cdot b=\frac{1}{2}(a b+b a) \\
a \wedge b=\frac{1}{2}(a b-b a) \\
a_{1} \wedge a_{2} \wedge \ldots \wedge a_{p}=\frac{1}{p!} \sum_{\pi \in S_{p}} \operatorname{sgn}(\pi) a_{\pi(1)} a_{\pi(2)} \ldots a_{\pi(p)}
\end{gathered}
$$

For general multivectors we also define the commutator product

$$
A \times B=\frac{1}{2}(A B-B A)
$$

Algebra of \mathbb{E}^{3}

Algebra is spanned by

$$
\left\{1, e_{1}, e_{2}, e_{3}, B_{1} \equiv e_{2} e_{3}, B_{2} \equiv e_{3} e_{1}, B_{3} \equiv e_{1} e_{2}, I \equiv e_{1} e_{2} e_{3}\right\}
$$

Algebra of \mathbb{E}^{3}

Algebra is spanned by

$$
\left\{1, e_{1}, e_{2}, e_{3}, B_{1} \equiv e_{2} e_{3}, B_{2} \equiv e_{3} e_{1}, B_{3} \equiv e_{1} e_{2}, I \equiv e_{1} e_{2} e_{3}\right\}
$$

There is a one-to-one mapping between vectors and bivectors

$$
B_{i}=I e_{i}
$$

Algebra of \mathbb{E}^{3}

Algebra is spanned by

$$
\left\{1, e_{1}, e_{2}, e_{3}, B_{1} \equiv e_{2} e_{3}, B_{2} \equiv e_{3} e_{1}, B_{3} \equiv e_{1} e_{2}, I \equiv e_{1} e_{2} e_{3}\right\}
$$

There is a one-to-one mapping between vectors and bivectors

$$
B_{i}=I e_{i}
$$

With our notation and the duality we can write

$$
e_{i} e_{j}=\delta_{i j}+I \varepsilon_{i j k} e_{k}
$$

The algebra of two-dimensional Euclidean space is spanned by elements

$$
\left\{1, e_{1}, e_{2}, e_{1} e_{2}\right\}
$$

The algebra of two-dimensional Euclidean space is spanned by elements

$$
\left\{1, e_{1}, e_{2}, e_{1} e_{2}\right\}
$$

It is important to note that $\left(e_{1} e_{2}\right)^{2}=-1$, from that

$$
e^{-\varphi e_{1} e_{2}}=\sum_{n=0}^{\infty} \frac{(-\varphi)^{n}}{n!}\left(e_{1} e_{2}\right)^{n}=\cos \varphi-e_{1} e_{2} \sin \varphi
$$

The algebra of two-dimensional Euclidean space is spanned by elements

$$
\left\{1, e_{1}, e_{2}, e_{1} e_{2}\right\}
$$

It is important to note that $\left(e_{1} e_{2}\right)^{2}=-1$, from that

$$
e^{-\varphi e_{1} e_{2}}=\sum_{n=0}^{\infty} \frac{(-\varphi)^{n}}{n!}\left(e_{1} e_{2}\right)^{n}=\cos \varphi-e_{1} e_{2} \sin \varphi
$$

So the rotation is realized as
$e^{-\varphi e_{1} e_{2}}\left(x e_{1}+y e_{2}\right)=(x \cos \varphi+y \sin \varphi) e_{1}+(-x \sin \varphi+y \cos \varphi) e_{2}$

Simple rotation in a plane associated with a unit bivector B acts only on the part parallel to the plane

$$
e^{-\frac{\varphi}{2} B} v e^{\frac{\varphi}{2} B}=v_{\perp}+e^{-\varphi B} v_{\|}
$$

General rotations are composed of simple rotations and the corresponding objects are called rotors

Pseudoscalars

The unit object of the highest grade in the algebra is called the pseudoscalar of the algebra

$$
I=e_{1} e_{2} \ldots e_{n}
$$

The unit object of the highest grade in the algebra is called the pseudoscalar of the algebra

$$
I=e_{1} e_{2} \ldots e_{n}
$$

Subspaces of V generate subalgebras of $C l(V, Q)$

The unit object of the highest grade in the algebra is called the pseudoscalar of the algebra

$$
I=e_{1} e_{2} \ldots e_{n}
$$

Subspaces of V generate subalgebras of $C l(V, Q)$ One-to-one correspondence between unit blades and subspaces

Pseudoscalar of a manifold

Consider a submanifold \mathcal{M} of \mathbb{R}^{N} given by

$$
f: \mathcal{R} \longrightarrow \mathbb{R}^{N} ; \quad\left(u^{1}, \ldots, u^{d}\right) \mapsto f\left(u^{1}, \ldots, u^{d}\right)
$$

Consider a submanifold \mathcal{M} of \mathbb{R}^{N} given by

$$
f: \mathcal{R} \longrightarrow \mathbb{R}^{N} ; \quad\left(u^{1}, \ldots, u^{d}\right) \mapsto f\left(u^{1}, \ldots, u^{d}\right)
$$

Its tangent space is spanned by $\left\{f_{\mu} \equiv \frac{\partial f}{\partial u^{\mu}}\right\}_{\mu=1}^{d}$, these multiplied together give

$$
f_{1} \wedge \ldots \wedge f_{d}=\sqrt{g} I_{\mathcal{M}}
$$

Consider a submanifold \mathcal{M} of \mathbb{R}^{N} given by

$$
f: \mathcal{R} \longrightarrow \mathbb{R}^{N} ; \quad\left(u^{1}, \ldots, u^{d}\right) \mapsto f\left(u^{1}, \ldots, u^{d}\right)
$$

Its tangent space is spanned by $\left\{f_{\mu} \equiv \frac{\partial f}{\partial u^{\mu}}\right\}_{\mu=1}^{d}$, these multiplied together give

$$
f_{1} \wedge \ldots \wedge f_{d}=\sqrt{g} I_{\mathcal{M}}
$$

$I_{\mathcal{M}}$ is the unique d-blade corresponding to the tangent space

Shape operator

Derivative of $I_{\mathcal{M}}$

$$
\partial_{\mu} I_{\mathcal{M}}=\partial_{\mu}\left(e_{1} \wedge e_{2} \wedge \ldots \wedge e_{d}\right)=I_{\mathcal{M}} \sum_{k=1}^{d} e_{k} \wedge P^{\perp}\left(\partial_{\mu} e_{k}\right)
$$

Derivative of $I_{\mathcal{M}}$

$$
\partial_{\mu} I_{\mathcal{M}}=\partial_{\mu}\left(e_{1} \wedge e_{2} \wedge \ldots \wedge e_{d}\right)=I_{\mathcal{M}} \sum_{k=1}^{d} e_{k} \wedge P^{\perp}\left(\partial_{\mu} e_{k}\right)
$$

We define the shape operator as

$$
S_{\mu}=I_{\mathcal{M}}^{-1} \partial_{\mu} I_{\mathcal{M}} \Leftrightarrow \partial_{\mu} I_{\mathcal{M}}=I_{\mathcal{M}} S_{\mu}=I_{\mathcal{M}} \times S_{\mu}
$$

Derivative of $I_{\mathcal{M}}$

$$
\partial_{\mu} I_{\mathcal{M}}=\partial_{\mu}\left(e_{1} \wedge e_{2} \wedge \ldots \wedge e_{d}\right)=I_{\mathcal{M}} \sum_{k=1}^{d} e_{k} \wedge P^{\perp}\left(\partial_{\mu} e_{k}\right)
$$

We define the shape operator as

$$
S_{\mu}=I_{\mathcal{M}}^{-1} \partial_{\mu} I_{\mathcal{M}} \Leftrightarrow \partial_{\mu} I_{\mathcal{M}}=I_{\mathcal{M}} S_{\mu}=I_{\mathcal{M}} \times S_{\mu}
$$

The expansion of $I_{\mathcal{M}}$
$I_{\mathcal{M}}\left(u+\varepsilon c_{\mu}\right)=I_{\mathcal{M}}(u)+\varepsilon \partial_{\mu} I_{\mathcal{M}}(u)+\ldots \approx e^{-\frac{\varepsilon}{2} S_{\mu}(u)} I_{\mathcal{M}}(u) e^{\frac{\varepsilon}{2} S_{\mu}(u)}$

Shape operator

Parallel transport

The pseudoscalar $I_{\mathcal{M}}$ is parallel-transported by definition

Parallel transport

The pseudoscalar $I_{\mathcal{M}}$ is parallel-transported by definition Parallel transport along path γ

$$
A(\gamma(\varepsilon))=R_{\gamma}(\gamma(\varepsilon)) A(u) R_{\gamma}(\gamma(\varepsilon))^{-1}
$$

The pseudoscalar $I_{\mathcal{M}}$ is parallel-transported by definition Parallel transport along path γ

$$
A(\gamma(\varepsilon))=R_{\gamma}(\gamma(\varepsilon)) A(u) R_{\gamma}(\gamma(\varepsilon))^{-1}
$$

"EOM" for R_{γ}

$$
\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} R_{\gamma}=a^{\mu} \partial_{\mu} R_{\gamma}=-\frac{1}{2} a^{\nu} S_{\nu} R_{\gamma}, \quad R_{\gamma}(\gamma(0))=1
$$

The pseudoscalar $I_{\mathcal{M}}$ is parallel-transported by definition Parallel transport along path γ

$$
A(\gamma(\varepsilon))=R_{\gamma}(\gamma(\varepsilon)) A(u) R_{\gamma}(\gamma(\varepsilon))^{-1}
$$

"EOM" for R_{γ}

$$
\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} R_{\gamma}=a^{\mu} \partial_{\mu} R_{\gamma}=-\frac{1}{2} a^{\nu} S_{\nu} R_{\gamma}, \quad R_{\gamma}(\gamma(0))=1
$$

Shape operator encodes connection on \mathcal{M}

$$
\Gamma^{\rho}{ }_{\mu \nu}=e^{\rho} \cdot\left(\partial_{\nu} e_{\mu}+S_{\nu} \cdot e_{\mu}\right)
$$

Covariant derivative

Operator of covariant derivative in coordinate direction

$$
\begin{aligned}
D_{\mu} A(u) & =\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left(e^{\frac{1}{2} \varepsilon S_{\mu}} A\left(\gamma^{\mu}(\varepsilon)\right) e^{-\frac{1}{2} \varepsilon S_{\mu}}-A(u)\right) \\
& =\partial_{\mu} A(u)-A(u) \times S_{\mu} .
\end{aligned}
$$

Covariant derivative

Operator of covariant derivative in coordinate direction

$$
\begin{aligned}
D_{\mu} A(u) & =\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left(e^{\frac{1}{2} \varepsilon S_{\mu}} A\left(\gamma^{\mu}(\varepsilon)\right) e^{-\frac{1}{2} \varepsilon S_{\mu}}-A(u)\right) \\
& =\partial_{\mu} A(u)-A(u) \times S_{\mu} .
\end{aligned}
$$

Components of torsion in a frame $\left\{e_{\mu}\right\}_{\mu=1}^{d}$ are

$$
T_{\mu \nu}=D_{\mu} e_{\nu}-D_{\nu} e_{\mu}
$$

Covariant derivative

Operator of covariant derivative in coordinate direction

$$
\begin{aligned}
D_{\mu} A(u) & =\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left(e^{\frac{1}{2} \varepsilon S_{\mu}} A\left(\gamma^{\mu}(\varepsilon)\right) e^{-\frac{1}{2} \varepsilon S_{\mu}}-A(u)\right) \\
& =\partial_{\mu} A(u)-A(u) \times S_{\mu} .
\end{aligned}
$$

Components of torsion in a frame $\left\{e_{\mu}\right\}_{\mu=1}^{d}$ are

$$
T_{\mu \nu}=D_{\mu} e_{\nu}-D_{\nu} e_{\mu}
$$

Shape operator is "torsion-free"

$$
D_{\mu} S_{\nu}-D_{\nu} S_{\mu}=0
$$

Curvature

Commutator of covariant derivatives

$$
\left(D_{\mu} D_{\nu}-D_{\nu} D_{\mu}\right) A=A \times\left(D_{\mu} S_{\nu}-D_{\nu} S_{\mu}+S_{\mu} \times S_{\nu}\right)
$$

Curvature

Commutator of covariant derivatives

$$
\left(D_{\mu} D_{\nu}-D_{\nu} D_{\mu}\right) A=A \times\left(D_{\mu} S_{\nu}-D_{\nu} S_{\mu}+S_{\mu} \times S_{\nu}\right)
$$

Curvature bivector

$$
\Omega_{\mu \nu}=D_{\mu} S_{\nu}-D_{\nu} S_{\mu}+S_{\mu} \times S_{\nu}=S_{\mu} \times S_{\nu}
$$

Conclusion

- Connection represented by bivectors
- Connection represented by bivectors
- Torsion-free equation

$$
D_{\mu} S_{\nu}-D_{\nu} S_{\mu}=0
$$

- Connection represented by bivectors
- Torsion-free equation

$$
D_{\mu} S_{\nu}-D_{\nu} S_{\mu}=0
$$

- Curvature given algebraically

$$
\Omega_{\mu \nu}=S_{\mu} \times S_{\nu}
$$

