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Matrix Clifford Algebras

Two well-known matrix algebras
@ The Pauli Algebra

{Ui,U]’} =0i0j +00; = 25”'
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Matrix Clifford Algebras

Two well-known matrix algebras
@ The Pauli Algebra

{Ui,U]’} =0i0j +00; = 25@'
@ The Dirac Algebra

{'7#: 'YV} = 2N
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Free tensor algebra

Definition
Let V be a vector space over field F. For every k € N we define
the k-th tensor power of V as

TF V) =VeVe...eV,

and we define T°(V) = F.

.
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Free tensor algebra

Definition
Let V be a vector space over field F. For every k € N we define
the k-th tensor power of V as

TF V) =VeVe...eV,

and we define T°(V) = F.

.

We also define the operation ®j; : T*(V) x TH (V') — T+ (V)

(M®...QU) R (W ®..0wW) =11®.. QUVERW Q... wy,
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Free tensor algebra

Definition
Let V be a vector space over field F. For every k € N we define
the k-th tensor power of V as

TF V) =VeVe...eV,

and we define T°(V) = F.

.

We also define the operation ®j; : T*(V) x TH (V') — T+ (V)
(M®...QU) R (W ®..0wW) =11®.. QUVERW Q... wy,

For scalars: A®q it = At =t ®p0 A
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Free tensor algebra

Definition
The free tensor algebra of a vector space over field F is the direct
sum

T(V) = é T (V)
k=0

equipped with associative multiplication ® that is obtained from
®p, via linear extension.
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Quotient algebra

Definition

Let J be a subspace of T'(V') such that
VieJ,Vt,t eT(V): tjet € J.

Then we call 7 an ideal of T'(V)
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Quotient algebra

Definition

Let J be a subspace of T'(V') such that
VieJ,Vt,t eT(V): tjet € J.

Then we call 7 an ideal of T'(V)

Definition

For S subset of T'(V) we define (S) to be the smallest ideal of
T (V') containing S.
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Quotient algebra

Definition

Let J be a subspace of T'(V') such that
VieJ,Vt,t eT(V): tjet € J.

Then we call 7 an ideal of T'(V)

Definition

For S subset of T'(V) we define (S) to be the smallest ideal of
T (V') containing S.

The quotient space T'(V')/J can be equipped with multiplication
[f]-[t]=[tet]

consistently. (T'(V')/J,-) is the quotient algebra of T'(V).
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Clifford algebra

Definition

Let V' be a finite-dimensional real vector space equipped with a
non-degenerate quadratic form ). The Clifford algebra CI(V, Q) is
the quotient algebra of T'(V') given by an ideal

J={v®v-Q@) |veT (V)=V}).
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Clifford algebra

Definition

Let V' be a finite-dimensional real vector space equipped with a
non-degenerate quadratic form ). The Clifford algebra CI(V, Q) is
the quotient algebra of T'(V') given by an ideal

J={v®v-Q@) |veT (V)=V}).

@ Associative
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Clifford algebra

Definition

Let V' be a finite-dimensional real vector space equipped with a
non-degenerate quadratic form ). The Clifford algebra CI(V, Q) is
the quotient algebra of T'(V') given by an ideal

J={v®v-Q@) |veT (V)=V}).

@ Associative

@ Distributive over addition
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Clifford algebra

Definition

Let V' be a finite-dimensional real vector space equipped with a
non-degenerate quadratic form ). The Clifford algebra CI(V, Q) is
the quotient algebra of T'(V') given by an ideal

J={v®v-Q@) |veT (V)=V}).

@ Associative
@ Distributive over addition

@ Square of a vector is a scalar
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Clifford algebra

Definition

Let V' be a finite-dimensional real vector space equipped with a
non-degenerate quadratic form ). The Clifford algebra CI(V, Q) is
the quotient algebra of T'(V') given by an ideal

J={v®v-Q@) |veT (V)=V}).

@ Associative
@ Distributive over addition
@ Square of a vector is a scalar

@ Finite-dimensional
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Derived products

For vectors we define the inner and outer product
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Derived products

For vectors we define the inner and outer product

1
a-bzi(ab—kba)
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Derived products

For vectors we define the inner and outer product

1
a-bzi(ab—kba)

1
a/\bzi(ab—ba)
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Derived products

For vectors we define the inner and outer product

1
a-bzi(ab—kba)

aNb= —(ab— ba)

1
2

1
arNag A Nap = — Z SEN(T)Ar(1)Ar(2) - - - Or(p)
P TES)
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Derived products

For vectors we define the inner and outer product

1
a-bzi(ab—kba)

1
a/\bzi(ab—ba)

1
arNag A Nap = — Z SEN(T)Ar(1)Ar(2) - - - Or(p)
P TES)

For general multivectors we also define the commutator product
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Derived products

For vectors we define the inner and outer product

1
a-bzi(ab—kba)

1
a/\bzi(ab—ba)

1
arNag A Nap = — Z SEN(T)Ar(1)Ar(2) - - - Or(p)
P TES)

For general multivectors we also define the commutator product

AxB:%(AB—BA)
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Algebra of E?

Algebra is spanned by

{1,e1,e2,e3, By = ege3, Bo = ezeq, By = e1ea, [ = ejeges}
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Algebra of E?

Algebra is spanned by
{1,e1,e2,e3, By = ege3, Bo = ezeq, By = e1ea, [ = ejeges}
There is a one-to-one mapping between vectors and bivectors

Bi :Iei
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Algebra of E?

Algebra is spanned by
{1,e1,e2,e3, By = ege3, Bo = ezeq, By = e1ea, [ = ejeges}
There is a one-to-one mapping between vectors and bivectors
B; = I¢;
With our notation and the duality we can write

eej = 5ij + Ieijkek
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Algebra of E?

€3

B
B !

€2

€1
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Rotations in two dimensions

The algebra of two-dimensional Euclidean space is spanned by
elements

{1,e1,e2,€1€2}
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Rotations in two dimensions

The algebra of two-dimensional Euclidean space is spanned by
elements

{1,e1,e2,€1€2}

It is important to note that (eje2)? = —1, from that

ppeter _ Z (P‘ (e1e2)"™ = cosp — ejegsinp
n!

n=0
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Rotations in two dimensions

The algebra of two-dimensional Euclidean space is spanned by
elements

{1,e1,e2,€1€2}

It is important to note that (eje2)? = —1, from that

ppeter _ Z (P‘ (e1e2)"™ = cosp — ejegsinp
n!

n=0
So the rotation is realized as

e ¥4 (ze; +yes) = (xcosp+ysing)e; + (—xsinp +ycosp)ey
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General rotations

Simple rotation in a plane associated with a unit bivector B acts
only on the part parallel to the plane

@ @
-£B, 2B

ve =v] + B_WBUH

General rotations are composed of simple rotations and the
corresponding objects are called rotors
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Pseudoscalars

The unit object of the highest grade in the algebra is called the
pseudoscalar of the algebra

[:6162...en
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Pseudoscalars

The unit object of the highest grade in the algebra is called the
pseudoscalar of the algebra

[:6162...en

Subspaces of V' generate subalgebras of CI(V, Q)
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Pseudoscalars

The unit object of the highest grade in the algebra is called the
pseudoscalar of the algebra

[:6162...en

Subspaces of V' generate subalgebras of CI(V, Q)
One-to-one correspondence between unit blades and subspaces
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Pseudoscalar of a manifold

Consider a submanifold M of RY given by

f:R— RN (@ ud)— fut,. . u?)
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Pseudoscalar of a manifold

Consider a submanifold M of RY given by

f:R— RN (@ ud)— fut,. . u?)

Its tangent space is spanned by {fu = a—f} X these multiplied
M:

together give

fl/\.../\fd:\/ﬁlM
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Pseudoscalar of a manifold

Consider a submanifold M of RY given by

f:R— RN (@ ud)— fut,. . u?)

Its tangent space is spanned by {fu = 88712} X these multiplied
M:

together give

fl/\.../\fd:\/ﬁlM

I is the unique d-blade corresponding to the tangent space
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Pseudoscalar of a manifold

€2

RN
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Shape operator

Derivative of 14

d

a,LLIM = 8#(61 N e2 /\.../\ed) =1 Zek /\PL(auek)
k=1
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Shape operator

Derivative of 14

d
Oudm = 8#(61 Nea A...Neq) = Ipm Zek /\PL(auek)
k=1

We define the shape operator as

SMZIX/}auIM@auIM :IMSM:IM XSM
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Shape operator

Derivative of 14

d
Oudm = 8#(61 Nea A...Neq) = Ipm Zek /\PL(auek)
k=1

We define the shape operator as

SMZIX/}auIM@auIM :IMSM:IM XSM

The expansion of I,

Iv(u+ecy) = In(u) + € 0uIp(u) + ... ~ e 25 [y (u)e2 (W)
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Shape operator
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Parallel transport

The pseudoscalar I is parallel-transported by definition
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Parallel transport

The pseudoscalar I is parallel-transported by definition
Parallel transport along path v

A(y(e)) = Ry (y(e) A(w) Ry ((e)) ™
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Parallel transport

The pseudoscalar I is parallel-transported by definition
Parallel transport along path v

A(y(e)) = Ry (y(e) A(w) Ry ((e)) ™

"EOM" for R,

d L
T = OBy = —5a"S, Ry, Ry(v(0)) = 1,
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Parallel transport

The pseudoscalar I is parallel-transported by definition
Parallel transport along path v

A(y(e)) = Ry (y(e) A(w) Ry ((e)) ™

"EOM" for R,
d ) 1,
digR’y =a 8,LLR’Y - _50/ SVR’Y) RV(’Y(O)) = 17

Shape operator encodes connection on M

I?, =€’ (Ovey+ S, eu).
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Covariant derivative

Operator of covariant derivative in coordinate direction

D, Alu) = lim — (35 A(y(2))e 3% — A(u))

e—=0 ¢

= 0,A(u) — A(u) x S),.
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Covariant derivative

Operator of covariant derivative in coordinate direction

D, Alu) = lim — (35 A(y(2))e 3% — A(u))

e—=0 ¢

= 0,A(u) — A(u) x S),.

. . d
Components of torsion in a frame {e, };,_; are

Ty = Dye, — Dyey,
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Covariant derivative

Operator of covariant derivative in coordinate direction

D, Alu) = lim — (35 A(y(2))e 3% — A(u))

e—=0 ¢

= 0,A(u) — A(u) x S),.

. . d
Components of torsion in a frame {e, };,_; are

Ty = Dye, — Dyey,

Shape operator is "torsion-free”

D.S, — D,5, =0
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Curvature

Commutator of covariant derivatives

(DD, — D,D,)A = A x (DS, — D,S,, + S, x S,)
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Curvature

Commutator of covariant derivatives

(DD, — D,D,)A = A x (DS, — D,S,, + S, x S,)

Curvature bivector

Q= DSy — DuSy, + S, % Sy = 5, X S,
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Conclusion

@ Connection represented by bivectors
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Conclusion

@ Connection represented by bivectors

@ Torsion-free equation

DS, — D,S, =0
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Conclusion

@ Connection represented by bivectors

@ Torsion-free equation
D,S,—D,S,=0
@ Curvature given algebraically

Quu = S, xSy
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