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Matrix Clifford Algebras

Two well-known matrix algebras

The Pauli Algebra

{σi, σj} = σiσj + σjσi = 2δij

The Dirac Algebra

{γµ, γν} = 2ηµν
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Free tensor algebra

Definition

Let V be a vector space over field F. For every k ∈ N we define
the k-th tensor power of V as

T k(V ) = V ⊗ V ⊗ . . .⊗ V,

and we define T 0(V ) = F.

We also define the operation ⊗k,l : T k(V )× T l(V )→ T k+l(V )

(v1⊗ . . .⊗ vk)⊗k,l (w1⊗ . . .⊗wl) = v1⊗ . . .⊗ vk ⊗w1⊗ . . .⊗wl,

For scalars: λ⊗0,k t = λt = t⊗k,0 λ
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Free tensor algebra

Definition

The free tensor algebra of a vector space over field F is the direct
sum

T (V ) =

∞⊕
k=0

T k(V )

equipped with associative multiplication ⊗ that is obtained from
⊗k,l via linear extension.
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Quotient algebra

Definition

Let J be a subspace of T (V ) such that

∀j ∈ J ,∀t, t′ ∈ T (V ) : t⊗ j ⊗ t′ ∈ J .

Then we call J an ideal of T (V )

Definition

For S subset of T (V ) we define 〈S〉 to be the smallest ideal of
T (V ) containing S.

The quotient space T (V )/J can be equipped with multiplication

[t] · [t′] = [t⊗ t′]

consistently. (T (V )/J , ·) is the quotient algebra of T (V ).

Šimon Vedl Clifford’s Geometric Algebra in Differential Geometry



Quotient algebra

Definition

Let J be a subspace of T (V ) such that

∀j ∈ J ,∀t, t′ ∈ T (V ) : t⊗ j ⊗ t′ ∈ J .

Then we call J an ideal of T (V )

Definition

For S subset of T (V ) we define 〈S〉 to be the smallest ideal of
T (V ) containing S.

The quotient space T (V )/J can be equipped with multiplication

[t] · [t′] = [t⊗ t′]

consistently. (T (V )/J , ·) is the quotient algebra of T (V ).
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Clifford algebra

Definition

Let V be a finite-dimensional real vector space equipped with a
non-degenerate quadratic form Q. The Clifford algebra Cl(V,Q) is
the quotient algebra of T (V ) given by an ideal

J =
〈{
v ⊗ v −Q(v) | v ∈ T 1(V ) ≡ V

}〉
.

Associative

Distributive over addition

Square of a vector is a scalar

Finite-dimensional
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Derived products

For vectors we define the inner and outer product

a · b =
1

2
(ab+ ba)

a ∧ b =
1

2
(ab− ba)

a1 ∧ a2 ∧ . . . ∧ ap =
1

p!

∑
π∈Sp

sgn(π)aπ(1)aπ(2) . . . aπ(p)

For general multivectors we also define the commutator product

A×B =
1

2
(AB −BA)
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Algebra of E3

Algebra is spanned by

{1, e1, e2, e3, B1 ≡ e2e3, B2 ≡ e3e1, B3 ≡ e1e2, I ≡ e1e2e3}

There is a one-to-one mapping between vectors and bivectors

Bi = Iei

With our notation and the duality we can write

eiej = δij + Iεijkek
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Algebra of E3

e1

e2

e3

B2

B3

B1

Šimon Vedl Clifford’s Geometric Algebra in Differential Geometry



Rotations in two dimensions

The algebra of two-dimensional Euclidean space is spanned by
elements

{1, e1, e2, e1e2}

It is important to note that (e1e2)
2 = −1, from that

e−ϕe1e2 =

∞∑
n=0

(−ϕ)n

n!
(e1e2)

n = cosϕ− e1e2 sinϕ

So the rotation is realized as

e−ϕe1e2(xe1 + ye2) = (x cosϕ+ y sinϕ)e1 + (−x sinϕ+ y cosϕ)e2
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Šimon Vedl Clifford’s Geometric Algebra in Differential Geometry



General rotations

Simple rotation in a plane associated with a unit bivector B acts
only on the part parallel to the plane

e−
ϕ
2
Bve

ϕ
2
B = v⊥ + e−ϕBv‖

General rotations are composed of simple rotations and the
corresponding objects are called rotors
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Pseudoscalars

The unit object of the highest grade in the algebra is called the
pseudoscalar of the algebra

I = e1e2 . . . en

Subspaces of V generate subalgebras of Cl(V,Q)
One-to-one correspondence between unit blades and subspaces
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Pseudoscalar of a manifold

Consider a submanifold M of RN given by

f : R −→ RN ; (u1, . . . , ud) 7→ f(u1, . . . , ud)

Its tangent space is spanned by
{
fµ ≡ ∂f

∂uµ

}d
µ=1

, these multiplied

together give
f1 ∧ . . . ∧ fd =

√
g IM

IM is the unique d-blade corresponding to the tangent space
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Pseudoscalar of a manifold

M
R

N

f1

f2

IM

e1

e2
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Shape operator

Derivative of IM

∂µIM = ∂µ(e1 ∧ e2 ∧ . . . ∧ ed) = IM

d∑
k=1

ek ∧ P⊥(∂µek)

We define the shape operator as

Sµ = I−1M ∂µIM ⇔ ∂µIM = IMSµ = IM × Sµ

The expansion of IM

IM(u+ εcµ) = IM(u) + ε ∂µIM(u) + . . . ≈ e−
ε
2
Sµ(u)IM(u)e

ε
2
Sµ(u)
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Shape operator

M
R

N

f1

f2

IM

Sµ

e1

e2
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Parallel transport

The pseudoscalar IM is parallel-transported by definition

Parallel transport along path γ

A(γ(ε)) = Rγ(γ(ε))A(u)Rγ(γ(ε))−1

”EOM” for Rγ

d

dε
Rγ = aµ∂µRγ = −1

2
aνSνRγ , Rγ(γ(0)) = 1,

Shape operator encodes connection on M

Γρµν = eρ · (∂νeµ + Sν · eµ) .
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Covariant derivative

Operator of covariant derivative in coordinate direction

DµA(u) = lim
ε→0

1

ε

(
e

1
2
εSµA(γµ(ε))e−

1
2
εSµ −A(u)

)
= ∂µA(u)−A(u)× Sµ.

Components of torsion in a frame {eµ}dµ=1 are

Tµν = Dµeν −Dνeµ

Shape operator is ”torsion-free”

DµSν −DνSµ = 0
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Curvature

Commutator of covariant derivatives

(DµDν −DνDµ)A = A× (DµSν −DνSµ + Sµ × Sν)

Curvature bivector

Ωµν = DµSν −DνSµ + Sµ × Sν = Sµ × Sν
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Conclusion

Connection represented by bivectors

Torsion-free equation

DµSν −DνSµ = 0

Curvature given algebraically

Ωµν = Sµ × Sν
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