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» Known properties of H

» The pseudospectrum
> Study of the pseudospectrum of H

» Consequences of the pseudospectral
properties of H




Origins of PT-symmetric Quantum mechanics

» Operator —A + iz on L?(R) possesses real spectrum

[Bender, Boettcher 98]

» More generally: —A + z?(iz)¢ for € > 0
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Origins of PT-symmetric Quantum mechanics

» Operator —A + iz on L?(R) possesses real spectrum

Bender, Boettcher 98]

» More generally: —A + z?(iz)¢ for € > 0

? Due to PT-symmetry ! 19} :
17

Operator H is PT-symmetric 15
13

[H,PT] =0 (in operator sense) ?' I
I

» Parity 7
(PY) () = ¥(-x) i
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» Time reversal

(T¥) (2) = ¥(z) " ° ! ?
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Some aspects of PT-symmetry

Quasi-self-adjoint operators:

[Scholtz, Geyer, Hahne 92]

H is g-s-a if there exists a positive bounded
operator © with bounded inverse (called metric)
such that H* = OHO !




Some aspects of PT-symmetry

Quasi-self-adjoint operators:

H is g-s-a if there exists a positive bounded
operator © with bounded inverse (called metric)
such that H* = OHO !

» Change of Hilbert space
» H is self-adjoint in Hilbert space (LQ7 (- @))

» Similarity to a self-adjoint operator
> h=0Y2HO71/2 s self-adjoint

> solves problem with Stone’s theorem



Physical relevance

» Suggestions
> nuclear phySiCS [Scholtz, Geyer, Hahne 92]
» optics [Klaiman, Giinther, Moiseyev 08], [Schomerus 10]
> solid state phySiCS [Bendix, Fleischmann, Kottos, Shapiro 09]
> superconductivity [Rubinstein, Sternberg, Ma 07]

> electromagnetism [Ruschhaupt, Delgado, Muga 05, [Mostafazadeh 09]



Physical relevance

> Suggestions

>

>

>

» Experiments
> optics
[Guo et al. 09],
[Riiter et al. 10]

nuclear phySiCS [Scholtz, Geyer, Hahne 92]

optics [Klaiman, Giinther, Moiseyev 08], [Schomerus 10]

solid state physics [Bendix, Fleischmann, Kottos, Shapiro 09]
superconductivity [Rubinstein, Sternberg, Ma 07]
electromagnetism [Ruschhaupt, Delgado, Muga 05], [Mostafazadeh 09]

scattering [Hernandez-Coronado, Krej¢irik, Siegl 11




Introduction of the model

» Hilbert space L*(R)

d? 2 2.3
H:—@-‘riﬂ +LT,
2 d21/1 2 O 2
DOHI(H): ’(/JEL(R) —@'i‘ibiﬁ"‘lwaL(R)

» Observation of real spectrum
[Caliceti, Graffi, Maioli 80]
= attributed to the PT-symmetry




Introduction of the model

» Hilbert space L*(R)
2

d .
H:= ~d2 + 2% + i23

_ Ly + 2%+ iz € LQ(R)}

Dom(H) := {1/} € L*(R)

» Observation of real spectrum
[Caliceti, Graffi, Maioli 80]
= attributed to the P7T-symmetry

» Resembles the “Bender oscillator”




Introduction of the model

» Hilbert space L*(R)

d? 2n + 1
H:=—— 2y g ont
122 + 2% +1x s
d2
Dom(H) := {zp € L3(R) ‘ —d—;f ratp iz 2Tl e LQ(R)}

» Observation of real spectrum
[Caliceti, Graffi, Maioli 80]
= attributed to the PT-symmetry

» Resembles the “Bender oscillator”

» Results hold for the more general

case 2% — ¢ 20 1 (n>1)




Properties of H

v

Dom(H) = {v € W2%(R) |23 € L*(R) }

H is closed

v

» H is an operator with compact resolvent
= o(H) consists of isolated eigenvalues of finite algebraic multiplicity

v

Eigenvalues of H are real and simple

» H is m-accretive
={Ae€C|ReA< 0} Cp(H)

v

H is PT-symmetric

v

Resolvent is a Hilbert-Schmidt operator



Results about —dd—; +iz?

» All of the properties of H [Caliceti, Graffi, Maioli 80],[Dorey, Dunning,
Tateo 01], [Tai 05]

» Resolvent is a trace class operator [Mezincescu 01]



Results about —d(% + i3

» All of the properties of H [Caliceti, Graffi, Maioli 80],[Dorey. Dunning,

Tateo 01], [Tai 05]

» Resolvent is a trace class operator [Mezincescu 01]

Recent results:

» Completeness of eigenfunctions in L?(R) [Sicel, Krejeirik 12]
» Existence of a bounded metric operator © [Sicsl, Krejeirik 12]
» O cannot have bounded inverse [Sicgl, Krejeiiik 12]

» Wild pseudospectral behaviour [iKrejciiik, Sicsl, Tater, Viola 14]

Does something similar hold for H?



Definition of pseudospectrum

.. in the previous lecture



Pseudospectral behaviour

Trivial X Non-trivial



Pseudospectral behaviour

Trivial X Non-trivial

iaT~! (25 7% — (1 — 2?) T2 - 2), where

2
T= C?? — o2, Ors-Sommerfeld operator

For some C > 0 holds o.(4) C
{z € C|dist(z,0(A)) < Ce}



Pseudospectral behaviour

Trivial X Non-trivial

@
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iaT (iaR T2 —(1—2°)T?% — 2)7 where — 4z +iz?, Davies’ oscillator
2
T= ;—2 — o2, Ors-Sommerfeld operator
xT

For some C > 0 holds o.(4) C c-(A) is not in any neighbourhood
{z € C|dist(z,0(4)) < Ce} of o(A)



Pseudospectrum of H

Idea: Use semiclassical analysis [Davies 99]

d? 2 3
H=——+2"+ir
dz?
Unitary transformation

(UY) (z) =72 9(12)

leads to the semiclassical analogue of H:

UHU ' = 3 Hy,,
where
, d? 2/5,2 | : 3
Hy, :=—h 1.2 + hP x4+ ix
and h := 7°/2 is the semiclassical parameter.

How to study the pseudospectrum of Hj ?



Semiclassical technique

Theorem:

Let
dz
Ty = 7h — + Vh( )

where V), are analytic potentials in z for all & > 0 small enough which
take the form Vj(z) = Vy(z) + V(z, h), where V(z, h) — 0 locally
uniformly as h — 0.

Let A be from the set
Ap=A{+ Vi(z) | (,€) e R*, Im V() <0},
where the dash denotes standard differentiation with respect to z in R.

Then there exists some C = C(A\) > 1, some hg = ho(A) > 0, and an
h-dependent family of C°(R) functions {¢p, }o<n<n, With the
property that, for all 0 < h < hg,

(T = Nonll < O~ onl.



Remarks to the Theorem

» Analogue of a result in [Davies 99], [Dencker, Sjostrand, Zworski 04] for
potential depending on h

» Proof inspired by [Krejciiik, Siesl, Tater, Viola 14]

» For A € A we have \ € o.(Hy,) for all ¢ > C(\)~/"

Nomenclature:

> f(z,€) := €2 + Vj(z) — the symbol associated with Ay,

» Closure of A — the semiclassical pseudospectrum



Ingredients of the proof

1. Fix A = 23 + Vi(20)
2. JWKB approximation of the solution to (T — A)u =0
N(h)

u(z, h) := ' ¢@h)/h Z W aj(z, h),

3. Eikonal equation

The solution is analytic and well-defined near xy:

é(z, h) = —sgn (Im Vj (o /\//\ Vi(y) dy.



Ingredients of the proof

4. Transport equation

) : 2h d
—igp/h _ ig/h _ 2% r
e i®/h (T) — A)e : <¢ =

If we in a(z, h) = Z;V:(SL) ha;(z, h) set

+ 1¢//> _ h2d72

2 dz?

o (z, h)al) (2, h) + %qzﬁ"(x, B)ag(z, h) = 0,

o (2, B)af . 1) + 56 (2, B, )

i

then e 1%/ (T}, — \) /" a(z, h) = —hNF2a (2, h).



Ingredients of the proof

4. Transport equation

. , 2h d 1 d?
—ig/h (p _ ig/h _ 2 [, 4 2
¢ (Th=A)e i <¢ dx+2¢ ) h da?

If we in a(z, h) = ZN(h) ha;(z, h) set

& (2, B}, ) + 36" (2, Wao(, h) = 0,

& (2, h)al(z, h) + ;qb”(:v B)ay(z, h) = 2 " (@)
then e~/ (T}, — \) /" a(x, h) = —hNF2a (2, h).We add

boundary conditions ay(zp, ) = 1 and a;(zp, h) = 0 for j > 0 and
get analytic and well-defined solution near zy:

oy = V(w0 h)
wloh = S
(I h) 1 1(?/, h’)

¢ (20, h) Jo 2\/¢’ Yy, h



Ingredients of the proof

5. laj(a, h)| < Oy

= a(z,h) = Eo<j<(eclh>,1 B a;(z, h) is uniformly bounded analytic
function T

6. Pseudomode vy,(z) := @M /hy (z)a(z, h),

> x € C(R) identically equal to 1 in some neighbourhood of zo
and with sufficiently small support

7. (Th = M| < Ce /7

8. ||¢n|| not exponentially small for h — 0



Application on H,

d2 5
H), = —/12ﬁ + B2 i
dx

> Vo(z) =123, Vi(z) = h?/52?
» AD {)\ € C|Re\ > 0,|arg)| < arctan(vRe /\)}

» for A € A the Theorem gives (7 = h?/%)

H(H—7—3)\)—1” =73 H(Hh — )\)—1H > h6/50()\)1/h



Application on H,

d2 =4
H), = _h2ﬁ + B2 i
T

> Vo(z) =123, Vi(z) = h?/52?
» AD {)\ € C|Re\ > 0,|arg)| < arctan(vRe /\)}

» for A € A the Theorem gives (7 = h?/%)
H (H - 7'3>\)_1” =3 H(Hh - A)_lH > BS/5C(A) /P

4

For § > 0 exist constants C7, Cy > 0 such that for all £ > 0 small, o.
contains the set

{)\G(C

1 6/5
Al > C, Jarg)| < arctan VRe A — 4, [A| > O, <log E) }



Numerical visualisation

Im(a)

» Spectrum (red dots) and e-pseudospectra (enclosed by blue-green lines)
> ¢ =10"7(blue),1076-73 1076-5 ... 10'(green)

» Used computational method can be found in



Basis properties
Let us denote by {11}, the set of eigenfuncions of H

» The eigenfunctions of H form a complete set in L?(R)
(i.e. span of 1, is dense in LZ(R))

> resolvent is trace class operator (shown using [Almog, Helffer 14])
= completeness of its eigenfunctions

= Spectral mapping theorem



Basis properties

Let us denote by {11}, the set of eigenfuncions of H

» The eigenfunctions of H form a complete set in L?(R)
(i.e. span of 1, is dense in LZ(R))

> resolvent is trace class operator (shown using [Almog, Helffer 14])
= completeness of its eigenfunctions

= Spectral mapping theorem

» The eigenfunctions of H do not form a (Schauder) basis in L?(R)
(Schauder basis — every ¥ € L?(R) can be uniquely expressed as
P = Z::; apr, where ay, € C)

> ||(H — \)7!|| grows exponentially fast for |A| large
= spectral projections cannot be polynomially bounded [Davies 00]

= {¢1}{=y cannot form a basis



Consequences of the non-trivial pseudospectrum

» H is not similar to a self-adjoint operator via bounded and
boundedly invertible transformation 2

> If H were similar to a self-adjoint h then
0e)w(H) C oc(h) C oen(H),

where x = Q|2



Consequences of the non-trivial pseudospectrum

» H is not similar to a self-adjoint operator via bounded and
boundedly invertible transformation 2

> If H were similar to a self-adjoint h then
0e)w(H) C oc(h) C oen(H),
where & = Q2

» H is not quasi-self-adjoint with a bounded and boundedly
invertible metric ©

» Equivalent to the previous claim due to © = Q*Q



Consequences of the non-trivial pseudospectrum

» H is not similar to a self-adjoint operator via bounded and
boundedly invertible transformation 2

> If H were similar to a self-adjoint h then
0e)w(H) C oc(h) C oen(H),

where kK = ||Q||\|Qfl||

» H is not quasi-self-adjoint with a bounded and boundedly
invertible metric ©

» Equivalent to the previous claim due to © = Q*Q

» —iH is not a generator of a bounded semigroup
» Exponential growth of ||(H — )™ ||

» Result follows from



Conclusions
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H:—@—i—x + iz

» PT-symmetric quantum mechanics

» Importance of the pseudospectrum
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» PT-symmetric quantum mechanics

» Importance of the pseudospectrum

Results:

» Eigenfunctions of H form a complete set in L?(R)
» Wild behaviour of the pseudospectrum

= The eigenfunctions of H do not form a basis in L?(R)

= H is not similar to a self-adjoint operator via bounded and
boundedly invertible transformation

= —iH is not a generator of a bounded semigroup



Conclusions

& o s
H:—@—&—x + iz

» PT-symmetric quantum mechanics

» Importance of the pseudospectrum

Results:

» Eigenfunctions of H form a complete set in L?(R)
» Wild behaviour of the pseudospectrum

= The eigenfunctions of H do not form a basis in L?(R)

= H is not similar to a self-adjoint operator via bounded and
boundedly invertible transformation

= —iH is not a generator of a bounded semigroup

Moral: Pseudospectrum reveals what spectrum hides.



Thank you for your attention!
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