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Outline of the talk

I PT -symmetric quantum mechanic
I Origins and some aspects of the

theory

I The model
I Introduction of the operator H
I Known properties of H

I The pseudospectrum
I Study of the pseudospectrum of H

I Consequences of the pseudospectral
properties of H



Origins of PT -symmetric Quantum mechanics

I Operator −∆ + ix3 on L2(R) possesses real spectrum
[Bender, Boettcher 98]

I More generally: −∆ + x2(ix)ε for ε > 0

? Due to PT -symmetry ?

Operator H is PT -symmetric
m

[H ,PT ] = 0 (in operator sense)

I Parity
(Pψ) (x) = ψ(−x)

I Time reversal
(T ψ) (x) = ψ(x)
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Some aspects of PT -symmetry

Quasi-self-adjoint operators:
[Scholtz, Geyer, Hahne 92]

H is q-s-a if there exists a positive bounded
operator Θ with bounded inverse (called metric)
such that H∗ = ΘHΘ−1

I Change of Hilbert space
I H is self-adjoint in Hilbert space

(
L2, 〈·,Θ·〉

)
I Similarity to a self-adjoint operator

I h = Θ1/2HΘ−1/2 is self-adjoint
I solves problem with Stone’s theorem
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Physical relevance
I Suggestions

I nuclear physics [Scholtz, Geyer, Hahne 92]

I optics [Klaiman, Günther, Moiseyev 08], [Schomerus 10]

I solid state physics [Bendix, Fleischmann, Kottos, Shapiro 09]

I superconductivity [Rubinstein, Sternberg, Ma 07]

I electromagnetism [Ruschhaupt, Delgado, Muga 05], [Mostafazadeh 09]

I scattering [Hernandez-Coronado, Krejčǐŕık, Siegl 11]

I Experiments
I optics

[Guo et al. 09],
[Rüter et al. 10]
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Introduction of the model
I Hilbert space L2(R)

H := − d2

dx2 + x2 + ix3,

Dom(H ) :=
{
ψ ∈ L2(R)

∣∣∣∣−d2ψ

dx2 + x2ψ + ix3ψ ∈ L2(R)
}

I Observation of real spectrum
[Caliceti, Graffi, Maioli 80]
⇒ attributed to the PT -symmetry

I Resembles the “Bender oscillator”

I Results hold for the more general
case x3 → x 2n + 1 (n ≥ 1)
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Properties of H

I Dom(H ) =
{
ψ ∈W 2,2(R)

∣∣ x3ψ ∈ L2(R)
}

[Caliceti, Graffi, Maioli 80]

I H is closed [Caliceti, Graffi, Maioli 80]

I H is an operator with compact resolvent [Caliceti, Graffi, Maioli 80]
⇒ σ(H) consists of isolated eigenvalues of finite algebraic multiplicity

I Eigenvalues of H are real and simple [Shin 02]

I H is m-accretive
⇒ {λ ∈ C | Reλ < 0} ⊂ ρ(H)

I H is PT -symmetric

I Resolvent is a Hilbert-Schmidt operator [Caliceti, Graffi, Maioli 80]



Results about − d2

dx2 + ix3

I All of the properties of H [Caliceti, Graffi, Maioli 80],[Dorey, Dunning,
Tateo 01], [Tai 05]

I Resolvent is a trace class operator [Mezincescu 01]

Recent results:

I Completeness of eigenfunctions in L2(R) [Siegl, Krejčǐŕık 12]

I Existence of a bounded metric operator Θ [Siegl, Krejčǐŕık 12]

I Θ cannot have bounded inverse [Siegl, Krejčǐŕık 12]

I Wild pseudospectral behaviour [Krejčǐŕık, Siegl, Tater, Viola 14]

Does something similar hold for H?
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Definition of pseudospectrum

... in the previous lecture



Pseudospectral behaviour

Trivial × Non-trivial

iαT−1
(

1
iαR T2 − (1− x2)T2 − 2

)
, where

T = d2

dx2 − α2, Ors-Sommerfeld operator

For some C > 0 holds σε(A) ⊂
{z ∈ C | dist(z, σ(A)) < Cε}

− d2

dx2 + ix2, Davies’ oscillator

σε(A) is not in any neighbourhood
of σ(A)
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Pseudospectrum of H

Idea: Use semiclassical analysis [Davies 99]

H = − d2

dx2 + x2 + ix3

Unitary transformation

(Uψ) (x) := τ1/2 ψ(τx)

leads to the semiclassical analogue of H :

UHU−1 = τ3Hh,

where
Hh := −h2 d2

dx2 + h2/5x2 + ix3

and h := τ−5/2 is the semiclassical parameter.

How to study the pseudospectrum of Hh ?



Semiclassical technique
Theorem:
Let

Th := −h2 d2

dx2 + Vh(x),

where Vh are analytic potentials in x for all h > 0 small enough which
take the form Vh(x) = V0(x) + Ṽ (x, h), where Ṽ (x, h)→ 0 locally
uniformly as h → 0.

Let λ be from the set

Λh :=
{
ξ2 + Vh(x)

∣∣ (x, ξ) ∈ R2, ξ Im V ′h(x) < 0
}
,

where the dash denotes standard differentiation with respect to x in R.

Then there exists some C = C (λ) > 1, some h0 = h0(λ) > 0, and an
h-dependent family of C∞c (R) functions {ψh}0<h≤h0 with the
property that, for all 0 < h ≤ h0,

‖(Th − λ)ψh‖ < C−1/h‖ψh‖.



Remarks to the Theorem

I Analogue of a result in [Davies 99], [Dencker, Sjöstrand, Zworski 04] for
potential depending on h

I Proof inspired by [Krejčǐŕık, Siegl, Tater, Viola 14]

I For λ ∈ Λ we have λ ∈ σε(Hh) for all ε ≥ C (λ)−1/h

Nomenclature:
I f (x, ξ) := ξ2 + Vh(x) – the symbol associated with Ah

I Closure of Λ – the semiclassical pseudospectrum



Ingredients of the proof
1. Fix λ = x2

0 + Vh(x0)
2. JWKB approximation of the solution to (Th − λ)u = 0

u(x, h) := eiφ(x,h)/h
N(h)∑
j=0

hjaj(x, h),

3. Eikonal equation

f (x, φ′(x, h))− λ = 0
φ′(x, h)2 + Vh(x)− λ = 0

φ′(x, h) = ±
√
λ−Vh(x)

The solution is analytic and well-defined near x0:

φ(x, h) = −sgn (Im V ′h(x0))
∫ x

0

√
λ−Vh(y) dy.



Ingredients of the proof
4. Transport equation

e−iφ/h (Th − λ) eiφ/h = 2h
i

(
φ′

d
dx + 1

2φ
′′
)
− h2 d2

dx2

If we in a(x, h) :=
∑N(h)

j=0 hjaj(x, h) set

φ′(x, h)a′0(x, h) + 1
2φ
′′(x, h)a0(x, h) = 0,

φ′(x, h)a′j(x, h) + 1
2φ
′′(x, h)aj(x, h) = i

2a′′j−1(x, h)

then e−iφ/h (Th − λ) eiφ/ha(x, h) = −hN+2a′′N (x, h).

We add
boundary conditions a0(x0, h) = 1 and aj(x0, h) = 0 for j > 0 and
get analytic and well-defined solution near x0:

a0(x, h) =
√
φ′(x0, h)√
φ′(x, h)

,

aj(x, h) = 1√
φ′(x0, h)

∫ x

0

i a′′j−1(y, h)
2
√
φ′(y, h)

dy.
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Ingredients of the proof

5. |aj(x, h)| ≤ C j+1
1 j j

⇒ a(x, h) :=
∑

0≤j≤(eC1h)−1 hjaj(x, h) is uniformly bounded analytic
function

6. Pseudomode ψh(x) := eiφ(x,h)/hχ(x)a(x, h),

I χ ∈ C∞c (R) identically equal to 1 in some neighbourhood of x0
and with sufficiently small support

7. ‖(Th − λ)ψh‖ ≤ Ce−1/h

8. ‖ψh‖ not exponentially small for h → 0



Application on Hh

Hh = −h2 d2

dx2 + h2/5x2 + ix3

I V0(x) = ix3, Vh(x) = h2/5x2

I Λ ⊃
{
λ ∈ C | Reλ > 0, |argλ| < arctan(

√
Reλ)

}
I for λ ∈ Λ the Theorem gives (τ = h2/5)∥∥∥(H − τ3λ

)−1
∥∥∥ = τ−3

∥∥∥(Hh − λ)−1
∥∥∥ > h6/5C (λ)1/h

⇓

For δ > 0 exist constants C1,C2 > 0 such that for all ε > 0 small, σε
contains the set{
λ ∈ C

∣∣∣∣∣ |λ| > C1, |argλ| < arctan
√

Reλ− δ, |λ| ≥ C2

(
log 1

ε

)6/5
}
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Numerical visualisation

I Spectrum (red dots) and ε-pseudospectra (enclosed by blue-green lines)
I ε = 10−7(blue), 10−6.75, 10−6.5, . . . , 101(green)
I Used computational method can be found in [Trefethen 00].



Basis properties

Let us denote by {ψk}+∞k=1 the set of eigenfuncions of H

I The eigenfunctions of H form a complete set in L2(R)
(i.e. span of ψk is dense in L2(R))

I resolvent is trace class operator (shown using [Almog, Helffer 14])

⇒ completeness of its eigenfunctions

⇒ Spectral mapping theorem

I The eigenfunctions of H do not form a (Schauder) basis in L2(R)
(Schauder basis – every ψ ∈ L2(R) can be uniquely expressed as
ψ =

∑+∞
k=1 αkψk , where αk ∈ C)

I ‖(H − λ)−1‖ grows exponentially fast for |λ| large

⇒ spectral projections cannot be polynomially bounded [Davies 00]

⇒ {ψk}+∞
k=1 cannot form a basis
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Consequences of the non-trivial pseudospectrum

I H is not similar to a self-adjoint operator via bounded and
boundedly invertible transformation Ω

I If H were similar to a self-adjoint h then

σε/κ(H ) ⊂ σε(h) ⊂ σεκ(H ),

where κ = ‖Ω‖‖Ω−1‖

I H is not quasi-self-adjoint with a bounded and boundedly
invertible metric Θ

I Equivalent to the previous claim due to Θ = Ω∗Ω

I −iH is not a generator of a bounded semigroup
I Exponential growth of ‖(H − λ)−1‖

I Result follows from [Davies 07]
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Conclusions

H = − d2

dx2 + x2 + ix3

I PT -symmetric quantum mechanics

I Importance of the pseudospectrum

Results:

I Eigenfunctions of H form a complete set in L2(R)

I Wild behaviour of the pseudospectrum

⇒ The eigenfunctions of H do not form a basis in L2(R)

⇒ H is not similar to a self-adjoint operator via bounded and
boundedly invertible transformation

⇒ −iH is not a generator of a bounded semigroup

Moral: Pseudospectrum reveals what spectrum hides.
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Thank you for your attention!

http://gemma.ujf.cas.cz/∼r.novak
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