### On the pseudospectrum of the harmonic oscillator with imaginary cubic potential

#### Radek Novák

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

> Department of Theoretical Physics Nuclear Physics Institute, Řež

Jean Leray Laboratory of Mathematics University of Nantes

http://gemma.ujf.cas.cz/~r.novak

# Metody algebry a funkcionální analýzy v aplikacích Telč, August 18, 2015

Based on:

On the pseudospectrum of the harmonic oscillator with imaginary cubic potential Int. J. Theor. Phys. (2015), arXiv: 1411:1856

### Outline of the talk

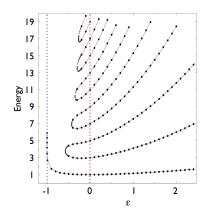
- $\mathcal{PT}$ -symmetric quantum mechanic
  - Origins and some aspects of the theory
- ▶ The model
  - Introduction of the operator H
  - Known properties of H
- ▶ The pseudospectrum
  - Study of the pseudospectrum of H
- Consequences of the pseudospectral properties of H



Origins of  $\mathcal{PT}$ -symmetric Quantum mechanics

▶ Operator -∆ + ix<sup>3</sup> on L<sup>2</sup>(ℝ) possesses real spectrum [Bender, Boettcher 98]

• More generally: 
$$-\Delta + x^2(ix)^{\varepsilon}$$
 for  $\varepsilon > 0$ 



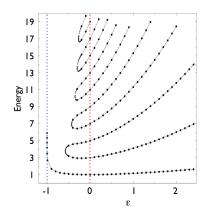
Origins of  $\mathcal{PT}$ -symmetric Quantum mechanics

- ▶ Operator -∆ + ix<sup>3</sup> on L<sup>2</sup>(ℝ) possesses real spectrum [Bender, Boettcher 98]
- More generally:  $-\Delta + x^2(ix)^{\varepsilon}$  for  $\varepsilon > 0$

? Due to  $\mathcal{PT}$ -symmetry ?

Operator H is  $\mathcal{PT}$ -symmetric  $(H, \mathcal{PT}) = 0$  (in operator sense)

- Parity  $(\mathcal{P}\psi)(x) = \psi(-x)$
- Time reversal  $(\mathcal{T}\psi)(x) = \overline{\psi(x)}$



### Some aspects of $\mathcal{PT}$ -symmetry

#### Quasi-self-adjoint operators: [Scholtz, Geyer, Hahne 92]

H is q-s-a if there exists a positive bounded operator  $\Theta$  with bounded inverse (called metric) such that  $H^* = \Theta H \Theta^{-1}$ 



### Some aspects of $\mathcal{PT}$ -symmetry

#### Quasi-self-adjoint operators: [Scholtz, Geyer, Hahne 92]

H is q-s-a if there exists a positive bounded operator  $\Theta$  with bounded inverse (called metric) such that  $H^* = \Theta H \Theta^{-1}$ 



- ▶ Change of Hilbert space
  - *H* is self-adjoint in Hilbert space  $(L^2, \langle \cdot, \Theta \cdot \rangle)$
- Similarity to a self-adjoint operator
  - $h = \Theta^{1/2} H \Theta^{-1/2}$  is self-adjoint
  - solves problem with Stone's theorem

### Physical relevance

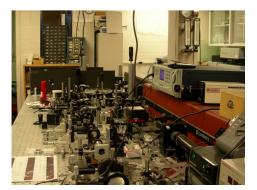
- Suggestions
  - nuclear physics [Scholtz, Geyer, Hahne 92]
  - ▶ optics [Klaiman, Günther, Moiseyev 08], [Schomerus 10]
  - ▶ solid state physics [Bendix, Fleischmann, Kottos, Shapiro 09]
  - superconductivity [Rubinstein, Sternberg, Ma 07]
  - electromagnetism [Ruschhaupt, Delgado, Muga 05], [Mostafazadeh 09]
  - scattering [Hernandez-Coronado, Krejčiřík, Siegl 11]

### Physical relevance

- Suggestions
  - nuclear physics [Scholtz, Geyer, Hahne 92]
  - ▶ optics [Klaiman, Günther, Moiseyev 08], [Schomerus 10]
  - ▶ solid state physics [Bendix, Fleischmann, Kottos, Shapiro 09]
  - superconductivity [Rubinstein, Sternberg, Ma 07]
  - electromagnetism [Ruschhaupt, Delgado, Muga 05], [Mostafazadeh 09]
  - scattering [Hernandez-Coronado, Krejčiřík, Siegl 11]

#### Experiments

optics
 [Guo et al. 09],
 [Rüter et al. 10]



### Introduction of the model

▶ Hilbert space  $L^2(\mathbb{R})$ 

$$\begin{split} H &:= -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + x^2 + \mathrm{i}x^3,\\ \mathrm{Dom}(H) &:= \left\{ \psi \in L^2(\mathbb{R}) \ \left| -\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + x^2\psi + \mathrm{i}x^3\psi \in L^2(\mathbb{R}) \right. \right\} \end{split}$$

▶ Observation of real spectrum
 [Caliceti, Graffi, Maioli 80]
 ⇒ attributed to the *PT*-symmetry



### Introduction of the model

▶ Hilbert space  $L^2(\mathbb{R})$ 

$$H := \left| -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + x^2 + \mathrm{i}x^3 \right|,$$
$$\mathrm{Dom}(H) := \left\{ \psi \in L^2(\mathbb{R}) \mid -\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + x^2\psi + \mathrm{i}x^3\psi \in L^2(\mathbb{R}) \right\}$$

- ▶ Observation of real spectrum
   [Caliceti, Graffi, Maioli 80]
   ⇒ attributed to the *PT*-symmetry
- ▶ Resembles the "Bender oscillator"



### Introduction of the model

▶ Hilbert space  $L^2(\mathbb{R})$ 

$$\begin{split} H &:= -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + x^2 + \mathrm{i}x^{2n+1},\\ \mathrm{Dom}(H) &:= \left\{ \psi \in L^2(\mathbb{R}) \ \left| -\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + x^2\psi + \mathrm{i}x^{2n+1}\psi \in L^2(\mathbb{R}) \right. \right\} \end{split}$$

- ▶ Observation of real spectrum
   [Caliceti, Graffi, Maioli 80]
   ⇒ attributed to the *PT*-symmetry
- ▶ Resembles the "Bender oscillator"
- ▶ Results hold for the more general case  $x^3 \to x^{2n+1}$   $(n \ge 1)$



### Properties of H

- ▶  $\text{Dom}(H) = \left\{ \psi \in W^{2,2}(\mathbb{R}) \mid x^3 \psi \in L^2(\mathbb{R}) \right\}$  [Caliceti, Graffi, Maioli 80]
- ▶ *H* is closed [Caliceti, Graffi, Maioli 80]
- ► *H* is an operator with compact resolvent [Caliceti, Graffi, Maioli 80]  $\Rightarrow \sigma(H)$  consists of isolated eigenvalues of finite algebraic multiplicity
- ▶ Eigenvalues of H are real and simple [Shin 02]
- ► *H* is m-accretive  $\Rightarrow \{\lambda \in \mathbb{C} \mid \operatorname{Re} \lambda < 0\} \subset \rho(H)$
- H is  $\mathcal{PT}$ -symmetric
- ▶ Resolvent is a Hilbert-Schmidt operator [Caliceti, Graffi, Maioli 80]

Results about  $-\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \mathrm{i}x^3$ 

- All of the properties of H [Caliceti, Graffi, Maioli 80], [Dorey, Dunning, Tateo 01], [Tai 05]
- ▶ Resolvent is a trace class operator [Mezincescu 01]

Results about  $-\frac{d^2}{dx^2} + ix^3$ 

- All of the properties of H [Caliceti, Graffi, Maioli 80], [Dorey, Dunning, Tateo 01], [Tai 05]
- ▶ Resolvent is a trace class operator [Mezincescu 01]

Recent results:

- ▶ Completeness of eigenfunctions in  $L^2(\mathbb{R})$  [Siegl, Krejčiřík 12]
- Existence of a bounded metric operator  $\Theta$  [Siegl, Krejčiřík 12]
- $\Theta$  cannot have bounded inverse [Siegl, Krejčiřík 12]
- ▶ Wild pseudospectral behaviour [Krejčiřík, Siegl, Tater, Viola 14]

Does something similar hold for H?

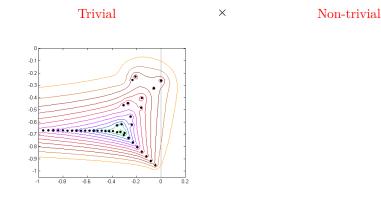
Definition of pseudospectrum

... in the previous lecture

### Pseudospectral behaviour

Trivial × Non-trivial

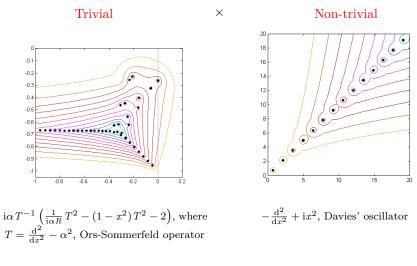
### Pseudospectral behaviour



 $i\alpha T^{-1} \left(\frac{1}{i\alpha R}T^2 - (1-x^2)T^2 - 2\right)$ , where  $T = \frac{d^2}{dx^2} - \alpha^2$ , Ors-Sommerfeld operator

For some C > 0 holds  $\sigma_{\varepsilon}(A) \subset \{z \in \mathbb{C} \mid \operatorname{dist}(z, \sigma(A)) < C\varepsilon\}$ 

### Pseudospectral behaviour



For some C > 0 holds  $\sigma_{\varepsilon}(A) \subset \{z \in \mathbb{C} \mid \operatorname{dist}(z, \sigma(A)) < C\varepsilon\}$ 

 $\sigma_{\varepsilon}(A)$  is not in any neighbourhood of  $\sigma(A)$ 

### Pseudospectrum of H

Idea: Use semiclassical analysis [Davies 99]

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + x^2 + \mathrm{i}x^3$$

Unitary transformation

$$(U\psi)(x) := \tau^{1/2} \psi(\tau x)$$

leads to the semiclassical analogue of H:

$$UHU^{-1} = \tau^3 H_h,$$

where

$$H_h := -h^2 \frac{\mathrm{d}^2}{\mathrm{d}x^2} + h^{2/5} x^2 + \mathrm{i}x^3$$

and  $h := \tau^{-5/2}$  is the semiclassical parameter.

#### How to study the pseudospectrum of $H_h$ ?

### Semiclassical technique

#### Theorem:

Let

$$T_h := -h^2 \frac{\mathrm{d}^2}{\mathrm{d}x^2} + V_h(x),$$

where  $V_h$  are analytic potentials in x for all h > 0 small enough which take the form  $V_h(x) = V_0(x) + \tilde{V}(x,h)$ , where  $\tilde{V}(x,h) \to 0$  locally uniformly as  $h \to 0$ .

Let  $\lambda$  be from the set

$$\Lambda_h := \left\{ \xi^2 + V_h(x) \mid (x,\xi) \in \mathbb{R}^2, \xi \operatorname{Im} V'_h(x) < 0 \right\},\,$$

where the dash denotes standard differentiation with respect to x in  $\mathbb{R}$ .

Then there exists some  $C = C(\lambda) > 1$ , some  $h_0 = h_0(\lambda) > 0$ , and an *h*-dependent family of  $C_c^{\infty}(\mathbb{R})$  functions  $\{\psi_h\}_{0 < h \leq h_0}$  with the property that, for all  $0 < h \leq h_0$ ,

$$||(T_h - \lambda)\psi_h|| < C^{-1/h} ||\psi_h||.$$

### Remarks to the Theorem

- ▶ Analogue of a result in [Davies 99], [Dencker, Sjöstrand, Zworski 04] for potential depending on h
- Proof inspired by [Krejčiřík, Siegl, Tater, Viola 14]
- For  $\lambda \in \Lambda$  we have  $\lambda \in \sigma_{\varepsilon}(H_h)$  for all  $\varepsilon \geq C(\lambda)^{-1/h}$

#### Nomenclature:

- $f(x,\xi) := \xi^2 + V_h(x)$  the symbol associated with  $A_h$
- ▶ Closure of  $\Lambda$  the semiclassical pseudospectrum

1. Fix  $\lambda = x_0^2 + V_h(x_0)$ 

2. JWKB approximation of the solution to  $(T_h - \lambda)u = 0$ 

$$u(x,h) := e^{i\phi(x,h)/h} \sum_{j=0}^{N(h)} h^j a_j(x,h),$$

3. Eikonal equation

$$f(x, \phi'(x, h)) - \lambda = 0$$
  
$$\phi'(x, h)^2 + V_h(x) - \lambda = 0$$
  
$$\phi'(x, h) = \pm \sqrt{\lambda - V_h(x)}$$

The solution is analytic and well-defined near  $x_0$ :

$$\phi(x,h) = -\operatorname{sgn}\left(\operatorname{Im} V_h'(x_0)\right) \int_0^x \sqrt{\lambda - V_h(y)} \,\mathrm{d}y.$$

4. Transport equation

$$e^{-i\phi/h} (T_h - \lambda) e^{i\phi/h} = \frac{2h}{i} \left( \phi' \frac{d}{dx} + \frac{1}{2} \phi'' \right) - h^2 \frac{d^2}{dx^2}$$
  
If we in  $a(x,h) := \sum_{j=0}^{N(h)} h^j a_j(x,h)$  set  
 $\phi'(x,h) a'_0(x,h) + \frac{1}{2} \phi''(x,h) a_0(x,h) = 0,$   
 $\phi'(x,h) a'_j(x,h) + \frac{1}{2} \phi''(x,h) a_j(x,h) = \frac{i}{2} a''_{j-1}(x,h)$ 

then  $e^{-\mathrm{i}\phi/h}(T_h - \lambda) e^{\mathrm{i}\phi/h} a(x, h) = -h^{N+2} a_N''(x, h).$ 

4. Transport equation

$$\mathrm{e}^{-\mathrm{i}\phi/h} \left(T_h - \lambda\right) \mathrm{e}^{\mathrm{i}\phi/h} = \frac{2h}{\mathrm{i}} \left(\phi' \frac{\mathrm{d}}{\mathrm{d}x} + \frac{1}{2}\phi''\right) - h^2 \frac{\mathrm{d}^2}{\mathrm{d}x^2}$$

If we in  $a(x,h) := \sum_{j=0}^{N(h)} h^j a_j(x,h)$  set

$$\phi'(x,h)a'_0(x,h) + \frac{1}{2}\phi''(x,h)a_0(x,h) = 0,$$
  
$$\phi'(x,h)a'_j(x,h) + \frac{1}{2}\phi''(x,h)a_j(x,h) = \frac{i}{2}a''_{j-1}(x,h)a_j(x,h) = \frac{i}{2}a''_{j-1}(x,h)a_j(x,h)a_j(x,h) = \frac{i}{2}a''_{j-1}(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)a_j(x,h)$$

then  $e^{-i\phi/h}(T_h - \lambda) e^{i\phi/h} a(x, h) = -h^{N+2} a''_N(x, h)$ . We add boundary conditions  $a_0(x_0, h) = 1$  and  $a_j(x_0, h) = 0$  for j > 0 and get analytic and well-defined solution near  $x_0$ :

$$a_0(x,h) = \frac{\sqrt{\phi'(x_0,h)}}{\sqrt{\phi'(x,h)}},$$
  
$$a_j(x,h) = \frac{1}{\sqrt{\phi'(x_0,h)}} \int_0^x \frac{i \, a_{j-1}''(y,h)}{2\sqrt{\phi'(y,h)}} \, \mathrm{d}y.$$

5. 
$$|a_j(x,h)| \leq C_1^{j+1} j^j$$
  
 $\Rightarrow a(x,h) := \sum_{0 \leq j \leq (eC_1h)^{-1}} h^j a_j(x,h)$  is uniformly bounded analytic function

6. Pseudomode  $\psi_h(x) := e^{i\phi(x,h)/h}\chi(x)a(x,h),$ 

.11 .

- ▶  $\chi \in C_c^{\infty}(\mathbb{R})$  identically equal to 1 in some neighbourhood of  $x_0$ and with sufficiently small support
- 7.  $||(T_h \lambda)\psi_h|| \le C e^{-1/h}$
- 8.  $\|\psi_h\|$  not exponentially small for  $h \to 0$

Application on  $H_h$ 

$$H_h = -h^2 \frac{\mathrm{d}^2}{\mathrm{d}x^2} + h^{2/5} x^2 + \mathrm{i}x^3$$

$$\begin{array}{l} \blacktriangleright \quad V_0(x) = \mathrm{i} x^3, \ V_h(x) = h^{2/5} x^2 \\ \blacktriangleright \quad \Lambda \supset \left\{ \lambda \in \mathbb{C} \mid \mathrm{Re} \, \lambda > 0, |\mathrm{arg}\lambda| < \arctan(\sqrt{\mathrm{Re} \, \lambda}) \right\} \end{array}$$

 $\blacktriangleright$  for  $\lambda \in \Lambda$  the Theorem gives  $(\tau = h^{2/5})$ 

$$\left\| \left( H - \tau^{3} \lambda \right)^{-1} \right\| = \tau^{-3} \left\| \left( H_{h} - \lambda \right)^{-1} \right\| > h^{6/5} C(\lambda)^{1/h}$$

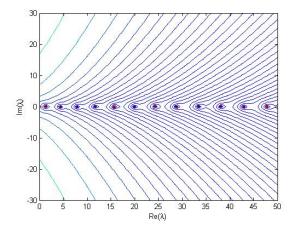
Application on  $H_h$ 

$$H_h = -h^2 \frac{\mathrm{d}^2}{\mathrm{d}x^2} + h^{2/5} x^2 + \mathrm{i}x^3$$

For  $\delta > 0$  exist constants  $C_1, C_2 > 0$  such that for all  $\varepsilon > 0$  small,  $\sigma_{\varepsilon}$  contains the set

$$\left\{\lambda \in \mathbb{C} \ \left| \left|\lambda\right| > C_1, \left|\arg\lambda\right| < \arctan\sqrt{\operatorname{Re}\lambda} - \delta, \left|\lambda\right| \ge C_2 \left(\log\frac{1}{\varepsilon}\right)^{6/5}\right\}\right\}$$

### Numerical visualisation



- Spectrum (red dots) and ε-pseudospectra (enclosed by blue-green lines)
   ε = 10<sup>-7</sup>(blue), 10<sup>-6.75</sup>, 10<sup>-6.5</sup>, ..., 10<sup>1</sup>(green)
- ▶ Used computational method can be found in [Trefethen 00].

### Basis properties

Let us denote by  $\{\psi_k\}_{k=1}^{+\infty}$  the set of eigenfunctions of H

- ► The eigenfunctions of H form a complete set in L<sup>2</sup>(ℝ) (i.e. span of ψ<sub>k</sub> is dense in L<sup>2</sup>(ℝ))
  - ▶ resolvent is trace class operator (shown using [Almog, Helffer 14])
  - $\Rightarrow$  completeness of its eigenfunctions
  - $\Rightarrow$  Spectral mapping theorem

### Basis properties

Let us denote by  $\{\psi_k\}_{k=1}^{+\infty}$  the set of eigenfunctions of H

- ► The eigenfunctions of H form a complete set in L<sup>2</sup>(ℝ) (i.e. span of ψ<sub>k</sub> is dense in L<sup>2</sup>(ℝ))
  - ▶ resolvent is trace class operator (shown using [Almog, Helffer 14])
  - $\Rightarrow$  completeness of its eigenfunctions
  - $\Rightarrow$  Spectral mapping theorem
- ► The eigenfunctions of H do not form a (Schauder) basis in  $L^2(\mathbb{R})$ (Schauder basis – every  $\psi \in L^2(\mathbb{R})$  can be uniquely expressed as  $\psi = \sum_{k=1}^{+\infty} \alpha_k \psi_k$ , where  $\alpha_k \in \mathbb{C}$ )
  - ▶  $||(H \lambda)^{-1}||$  grows exponentially fast for  $|\lambda|$  large
  - $\Rightarrow$  spectral projections cannot be polynomially bounded [Davies 00]

$$\Rightarrow \{\psi_k\}_{k=1}^{+\infty}$$
 cannot form a basis

Consequences of the non-trivial pseudospectrum

- $\blacktriangleright$  H is not similar to a self-adjoint operator via bounded and boundedly invertible transformation  $\Omega$ 
  - If H were similar to a self-adjoint h then

 $\sigma_{\varepsilon/\kappa}(H) \subset \sigma_{\varepsilon}(h) \subset \sigma_{\varepsilon\kappa}(H),$ 

where  $\kappa = \|\Omega\| \|\Omega^{-1}\|$ 

Consequences of the non-trivial pseudospectrum

- $\blacktriangleright$  H is not similar to a self-adjoint operator via bounded and boundedly invertible transformation  $\Omega$ 
  - If H were similar to a self-adjoint h then

 $\sigma_{\varepsilon/\kappa}(H) \subset \sigma_{\varepsilon}(h) \subset \sigma_{\varepsilon\kappa}(H),$ 

where  $\kappa = \|\Omega\| \|\Omega^{-1}\|$ 

- $\blacktriangleright$  H is not quasi-self-adjoint with a bounded and boundedly invertible metric  $\Theta$ 
  - Equivalent to the previous claim due to  $\Theta = \Omega^* \Omega$

Consequences of the non-trivial pseudospectrum

- $\blacktriangleright$  H is not similar to a self-adjoint operator via bounded and boundedly invertible transformation  $\Omega$ 
  - If H were similar to a self-adjoint h then

 $\sigma_{\varepsilon/\kappa}(H) \subset \sigma_{\varepsilon}(h) \subset \sigma_{\varepsilon\kappa}(H),$ 

where  $\kappa = \|\Omega\| \|\Omega^{-1}\|$ 

- $\blacktriangleright$  H is not quasi-self-adjoint with a bounded and boundedly invertible metric  $\Theta$ 
  - Equivalent to the previous claim due to  $\Theta = \Omega^* \Omega$
- ▶ -iH is not a generator of a bounded semigroup
  - Exponential growth of  $||(H \lambda)^{-1}||$
  - Result follows from [Davies 07]

### Conclusions

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + x^2 + \mathrm{i}x^3$$

- ▶  $\mathcal{PT}$ -symmetric quantum mechanics
- ▶ Importance of the pseudospectrum



### Conclusions

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + x^2 + \mathrm{i}x^3$$

- $\mathcal{PT}$ -symmetric quantum mechanics
- ▶ Importance of the pseudospectrum

THE END IS NEAR

Results:

- Eigenfunctions of H form a complete set in  $L^2(\mathbb{R})$
- ▶ Wild behaviour of the pseudospectrum
  - $\Rightarrow$  The eigenfunctions of H do not form a basis in  $L^2(\mathbb{R})$
  - $\Rightarrow$  H is not similar to a self-adjoint operator via bounded and boundedly invertible transformation
  - $\Rightarrow$  -iH is not a generator of a bounded semigroup

### Conclusions

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + x^2 + \mathrm{i}x^3$$

- $\mathcal{PT}$ -symmetric quantum mechanics
- ▶ Importance of the pseudospectrum

THE IS NEAR

Results:

- Eigenfunctions of H form a complete set in  $L^2(\mathbb{R})$
- ▶ Wild behaviour of the pseudospectrum
  - $\Rightarrow$  The eigenfunctions of H do not form a basis in  $L^2(\mathbb{R})$
  - $\Rightarrow$  H is not similar to a self-adjoint operator via bounded and boundedly invertible transformation
  - $\Rightarrow$  -iH is not a generator of a bounded semigroup

Moral: Pseudospectrum reveals what spectrum hides.

## Thank you for your attention!

