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Rotated and imaginary cubic oscillator

Rotated oscillator®

" A= —02 +iz? in L2(R)
Lo ={e"2k+1): k=0,1,2,...}
. 0:(A) much larger than e-neighborhood of o(A)

Imaginary cubic oscillator?
A:=-92 +iz3 in L2(R)

o(A) is discrete and real

1L. Boulton. J. Operator Theory 47 (2002), pp. 413-429; E. B. Davies. R. Soc. Lond. Proc.
Ser. A Math. Phys. Eng. Sci. 455 (1999), pp. 585-599; P. Exner. J. Math. Phys. 24 (1983),
pp. 1129-1135; K. Pravda-Starov. J. London Math. Soc. 73 (2006), pp. 745-761.



Pseudospectral convergence - motivation

Rotated oscillator

e operator:
A= —92 +iz? in L?(R)

e spectrum:

o(A) = {2k +1): k=0,1,2,...}
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Pseudospectral convergence - motivation

Rotated oscillator

e operator:
A= —92 +iz? in L?(R)

e spectrum:
o(A) = {2k +1): k=0,1,2,...}

Domain truncation

e sequence of operators:
Ay = —024iz? in L?((—n,n)) + Dirichlet BC at +n

o does o(An) — d(A)?

Interval (~0.5,0.5)
Im
10,
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e let A be a closed densely defined operator in a Banach space X
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o:(A) := O'(A)U{Z €C :(A=2)71 > é}



Constant resolvent norm

e let A be a closed densely defined operator in a Banach space X

Pseudospectrum

o:(A) := O'(A)U{Z €C :(A=2)71 > é}

Another definition with the non-strict inequality >

3e(A) = O'(A)U{ZE(C A =27 > é}



Constant resolvent norm

e let A be a closed densely defined operator in a Banach space X

Pseudospectrum

o (A) := a(A)U{z eC : (A-2)" > é}

Another definition with the non-strict inequality >

3e(A) = O'(A)U{ZE(C A =27 > é}

The question

e Does X:(A) = 0-(A) hold?
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Constant resolvent norm - maximum modulus principle

The question differently
Let M >0 and A € C(X).

Can {z € p(A) : ||(A—2)"!|| = M} have an open subset in C?

Resolvent as a holomorphic function

e recall: (A —2)~! is a holomorphic function on p(A)

e use the maximum modulus principle?

Maximum modulus principle

Let f be holomorphic on a connected open subset 2 of C. Let zp € Q and
[f(2)] < |f(20)]| for all z in a neighborhood of zp. Then f is constant on .

Holomorphic matrix-valued function

w9

e JAE)| =1 for |z] < 1

e but (A — z)~! is a very special function...



A remark on the geometry of Banach spaces

Uniformly convex Banach space

A Banach space X is uniformly convex, if for every € > 0 exists § > 0 such that for
all z,y € X with ||z]| = |ly|| = 1:

le-sl2e = [s@+v|<1-5
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A remark on the geometry of Banach spaces

Uniformly convex Banach space

A Banach space X is uniformly convex, if for every € > 0 exists § > 0 such that for
all 2,y € X with |2 = [ly] = 1:

le-yl2e = |s@+v]|<1-6

e geometrically: the unit ball is “uniformly round”

e any Hilbert space is uniformly convex (polarization identity)



Various other convexity

Uniform convexity

/ N\

Strict convexity Complex uniform convexity

N\ /

Complex strict convexity
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No constant resolvent norm

Known results

e X a Banach space and A € C(X)

e A+ ||[(A—X)"1| cannot be constant on an open subset Q C p(A) if

i) Globevnik®: A € #(X) and Q belongs to the unbounded component of p(A)
ii) A e B(X)

Globevnik® if X is complex uniformly convex

(e.g. Hilbert space, LP-space with 1 < p < o)

Daniluk (1994) for Hilbert spaces
Bf)ttcher—Grudsky»Silbermann4 for LP-spaces with 1 < p < oo
Harrabi® if X finite-dimensional

Shargorodsky6 if X or X* is complex uniformly convex (covers also p = oo )

iii) A generates a Cy semigroup

Shargorodsky7 if X or X* is complex uniformly convex

iv) A has compact resolvent

. Danvies—Shaurgoroclsky8 if X or X* is complex strictly convex

(e.g. if X or X* complex uniformly convex)

3J. Globevnik. Illinois J. Math. 20 (1976), pp. 503-506.
4A. Béttcher, S. M. Grudsky, and B. Silbermann. New York J. Math. 3 (1997), pp. 1-31.

5A. Harrabi.

RAIRO Modél. Math. Anal. Numér. 32 (1998), pp. 671-680.

SE. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493-504.
"E. Shargorodsky. Bull. Lond. Math. Soc. 42 (2010), pp. 1031-1034.
8E. B. Davies and E. Shargorodsky. Mathematika online first (2015).
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Shargorodsky example

Example with constant resolvent norm?

o ap:=k+1land B :=1+1/ak, k€N

e 2 X 2 blocks
By = (0 Uk

Bk 0), k eN,

e operator in £2(N): A := diag(B;, B2, Bs, .. .)
o 0(A) = Ugeno(Bg) ={xvk+2:k e N}

e inverse of the block
_ 1 A«
Bp-Nl=— 1 ( k)
( k ) Oékﬁk — A2 ﬁk A

9E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493-504.



Example with constant resolvent norm-

Shargorodsky example

9

o ap:=k+1land B :=1+1/ak, k€N

e 2 X 2 blocks
By = (0 Uk

Bk 0), k eN,

operator in £?(N): A := diag(B1, B2, Bs,-..)
o 0(A) = Ugeno(Bg) ={xvk+2:k e N}

inverse of the block
_ 1 A«
Bp-Nl=— 1 ( k)
( k ) Oékﬁk — A2 ﬁk A

for |A] < 1: i B — AL :H<0 1)H:1
im0 =|(5 )

9E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493-504.



Shargorodsky example

Example with constant resolvent norm?

o ap:=k+1land B :=1+1/ak, k€N

e 2 X 2 blocks
By = (0 Uk

Bk 0), k eN,

e operator in £2(N): A := diag(B;, B2, Bs, .. .)
o 0(A) = Ugeno(Bg) ={xvk+2:k e N}

e inverse of the block
_ 1 A«
— 1__ - k
BN == (0 )
for [A| < 1: : o=t [0 )| _
Jim 5 -0 =| ()] =1
for [A| < 1/2:

== g (16 DG I

_ |)\|+ak < 1/2+0¢k _1/2+O¢k
apfr — A2 T arBr —1/4  3/4+ oy

9E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493-504.



Shargorodsky example

Example with constant resolvent norm
e operator in £2(N): A = diag(B1, B2, B3, ...)
o for [\ < 1/2:

Al = sup [|(Bx = X))~ =1
keN




Example with constant resolvent norm
e operator in £2(N): A = diag(B1, B2, B3, ...)
o for [\ < 1/2:

Al = sup [|(Bx = X))~ =1
keN

Numerics

e it seems that
VA€ p(4), Il(A-N"Y =1

Shargorodsky example
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then
VA€ p(A), [[(A=XN)"1>M.
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Constant resolvent norm result

Theorem [S. Bogli & PS, 2014]

Let X be a complex uniformly convex Banach space, A € C(X). If there exist an
open subset Q C p(A) and a constant M > 0 such that

I(A=XN"H=M xeq,

then
VA€ p(A), [[(A=XN)"1>M.

Sketch of the proof
e F(\) := (A —X)"! is analytic function with ||F(-)|| = M on Q
e take Ao € Q and {eg}r C H with |lex]| =1 and [|(A — Xo) lexl — M .
e Globevnik & Vidav!?: ||F/(Mo)ex|| — 0O

e the 1st resolvent identity twice:
(A=XN)"ler = (A= 20) ter+ (A= 20) (T+(A=20)(A=N)71) (A= Xo)2ex
——

e hence =F’(Xo)er—0

HA=N"U> lim [(A=X)Texl = lim [(A=ro)lexl = M O
k—o0 k—oo

103, Globevnik and I. Vidav. J. Funct. Anal. 15 (1974), pp. 394-403.
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S— 00 §—» 00

then resolvent norm cannot be constant on any open subset of p(A).
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Constant resolvent norm result

Corrolaries

i) If there exists a path v : [0,00) — p(A) such that
lim |y(s)] = oo,  lim [(A=~(s))"'|=0,
S— 00 §—» 00
then resolvent norm cannot be constant on any open subset of p(A).
ii) This applies if A € #B(X) since

A =N < (A= 1ADTY A > (1AL

iii) This applies if A generates a Cp semigroup since, by Hille-Yosida Theorem,

IC>0,weR: A=V <CO-—w)™ e (w,+00).
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Example - various resolvent norm behaviors

Operator matrix
T := <Sl f((iA)> in HOH

e A= A* >0 in H with discrete spectrum, f : R — R continuous
o for A=A in L?2(R%) and f(x) = 1: T is the generator of wave equation
a) lim f(z)=0 = p(T)=0
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b) lim f(z) =C >0and f(z) > C = constant |[(T —2)71| on Q C p(T)
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Example - various resolvent norm behaviors

Operator matrix

T::(Sl f(OA>> in HeH

e A= A* >0 in H with discrete spectrum, f : R — R continuous
o for A=A in L?2(R%) and f(x) = 1: T is the generator of wave equation
a) lim f(z)=0 = p(T)=0
T—+o00o

b) lim f(z) =C >0and f(z) > C = constant |[(T —2)71| on Q C p(T)

T—+o00
e Shargorodsky example: A = diag(2,3,4,...) and f(z) =1+ 1/z
) f(z) =z, B€(0,1) = [(T —re®)~|| =O(r=2#/B+D) if ¢ ¢ {0,x}.

e decay == ||(T — 2z)"'|| is not constant on any open set
e decay not sufficient to generate a Cy semigroup



Convergence of pseudospectra

Hausdorff distance
e M, N C C non-empty and compact
dyg (M, N) = max { max dist(z, N), max dist(w, M
n( ) {zEM ( ) weN ( )}

Wy

z M
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Pseudospectral convergence result

Theorem [S. Bogli & PS, 2014]
Let

o H and Hn, n € N, subspaces of a Hilbert space Hg

o AeC(H), An € C(Hn) densely defined

e K C C compact and € >0
If
(8) Fho € Nnenp(An) N p(A):

1(An — X0) "t Py, — (A—Xo) *Pyl =0

(b) A+ ||(A—X)"1| is non-constant on any open subset of p(A)

(c) oce(A)NK=0(A)NK#D
then
dy (O'S(An)ﬁK,O'S(A)ﬁK) —0, n—oo.

Remarks

e previous result by Hansen (PhD thesis, 2008), problems on 0K

e assumption on K can be avoided by using a different distance (suitable for
unbounded sets)

e assumption (b) cannot be omitted
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Questions

e Does o.(T},) converge to o-(T)?

e Does o(Ty) converge to o(T)? In what sense?



Example domain truncation

Rotated oscillator

e operator:
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Rotated oscillator

e operator:

e spectrum:

Example domain truncation

A= —92 +iz? in L?(R)

o(A) = {2k +1): k=0,1,2,...}

Domain truncation

e sequence of operators:

Ay = —082 +iz? in L?((—n,n)) + Dirichlet BC at +n

e O, =(—n,n)

Interval (~0.5,0.5)
Im
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Assumptions on potential

m-sectorial case

e 1D example: Q(z) = (1 + )22 +id(x)
e decomposition: Q = Qo + W

© sectoriality: L _(R?) 3 Qo has values in a sector with semi-angle < /2
® growth at co: |Qo(z)| — oo as |z| = oo

® W: possibly singular, but —A-form bounded with bound < 1

e the operator T introduced via closed sectorial forms
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non-m-sectorial case
o 1D example: Q(z) = iz — 22 + iz
e decomposition: Q = Qo —U+W,ReQp>0,U >0, UReQp=0

0 regularity: Qo € WU°(R?), U € L2 (RY) and

loc

—1/4

[VQol? < a+blQol?, U? <ay +byllmQo|> with by <1

® growth at co: |Qo(z)| — oo as |z| = oo
® W: possibly singular, but —A-bounded with bound < 1

o operator T introduced via Kato’s Thm. (m-accretive Schrédinger operators'!)

11D, E. Edmunds and W. D. Evans. Spectral Theory and Differential Operators. Oxford
University Press, 1987.
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Convergence of spectra and pseudospectra

Generalized norm resolvent convergence
(70 =N xa, = (@ =27 =0, Aep(T).

Pseudospectral convergence

dy (Jg(An) NK,o.(A)N K) —0, n— oo

Spectral convergence (spectral exactness)

@ Every eigenvalue \ of T' is approximated:
there is {\n}n, An € 0(Th), such that A\, = X as n — oo.

® Every accumulation point of {\,}, is an eigenvalue of T :
If {An}n, An € 0(Tn), having an accumulation point A, then A € o(T).
Convergence rate for eigenvalues

e )\ € o(T) simple & ¢ is the corresponding eigenfunction
Then, there is C' > 0 such that

A= Xnl < Cllé IR\ B (0)].



Examples

T =-82+iz3, Dom (T) = W?22(R) N Dom ()
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Examples

W22(R) N Dom (z)

Dom (T)

T =-82 + iz,

0
e all eigenvalues escape to infinity

e o(T)
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