Remarks on the convergence of pseudospectra ### Petr Siegl Mathematical Institute, University of Bern, Switzerland Nuclear Physics Institute ASCR, Řež, Czech Republic http://gemma.ujf.cas.cz/~siegl/ #### Based on - [1] S. Bögli and P. Siegl: Remarks on the convergence of pseudospectra, Integral Equations and Operator Theory 80, 2014, 303-321, arXiv:1408.3431. - [2] S. Bögli, P. Siegl, and C. Tretter: Approximations of spectra of Schrödinger operators with complex potentials on \mathbb{R}^d , 32 pp. # Outline - 1. Constant resolvent norm - 2. Convergence of pseudospectra & applications to Schrödinger operators #### Rotated oscillator¹ $$A:=-\partial_x^2+\mathrm{i} x^2 \text{ in } L^2(\mathbb{R})$$ $$\sigma(A)=\left\{e^{\mathrm{i}\pi/4}(2k+1): k=0,1,2,\dots\right\}$$ $$\sigma_\varepsilon(A) \text{ much larger than } \varepsilon\text{-neighborhood of } \sigma(A)$$ Imaginary cubic oscillator² $$A := -\partial_x^2 + ix^3 \text{ in } L^2(\mathbb{R})$$ $\sigma(A)$ is discrete and real ¹L. Boulton. J. Operator Theory 47 (2002), pp. 413-429; E. B. Davies. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), pp. 585-599; P. Exner. J. Math. Phys. 24 (1983), pp. 1129-1135; K. Pravda-Starov. J. London Math. Soc. 73 (2006), pr.745-761. ²C. M. Bender and S. Boettcher. Phys. Rev. Lett. 80 (1998), pp. 5243–5246; D. Krejčiřík et al. arXiv:1402.1082. 2014; P. Siegl and D. Krejčiřík. Phys. Rev. D 86 (2012), 121702(R). # Pseudospectral convergence - motivation #### Rotated oscillator • operator: $$A := -\partial_x^2 + ix^2 \text{ in } L^2(\mathbb{R})$$ • spectrum: $$\sigma(A) = \left\{ e^{\mathrm{i}\pi/4} (2k+1) : k = 0, 1, 2, \dots \right\}$$ #### Domain truncation sequence of operators: $$A_n := -\partial_x^2 + ix^2$$ in $L^2((-n, n)) + \text{Dirichlet BC at } \pm n$ • does $\sigma(A_n) \to \sigma(A)$? # Pseudospectral convergence - motivation #### Rotated oscillator • operator: $$A := -\partial_x^2 + ix^2 \text{ in } L^2(\mathbb{R})$$ • spectrum: $$\sigma(A) = \left\{ e^{i\pi/4} (2k+1) : k = 0, 1, 2, \dots \right\}$$ #### Domain truncation • sequence of operators: $$A_n := -\partial_x^2 + \mathrm{i} x^2$$ in $L^2((-n, n))$ + Dirichlet BC at $\pm n$ • does $\sigma(A_n) \to \sigma(A)$? • let A be a closed densely defined operator in a Banach space \mathcal{X} #### Pseudospectrum $$\sigma_{\varepsilon}(A) := \sigma(A) \cup \left\{ z \in \mathbb{C} : \|(A-z)^{-1}\| > \frac{1}{\varepsilon} \right\}$$ Another definition with the non-strict inequality \geq $$\Sigma_{\varepsilon}(A) := \sigma(A) \cup \left\{ z \in \mathbb{C} : \|(A-z)^{-1}\| \ge \frac{1}{\varepsilon} \right\}$$ #### The question • Does $$\Sigma_{\varepsilon}(A) = \overline{\sigma_{\varepsilon}(A)}$$ hold? • let A be a closed densely defined operator in a Banach space \mathcal{X} #### Pseudospectrum $$\sigma_{\varepsilon}(A) := \sigma(A) \cup \left\{ z \in \mathbb{C} : \|(A-z)^{-1}\| \ge \frac{1}{\varepsilon} \right\}$$ Another definition with the non-strict inequality \geq $$\Sigma_{\varepsilon}(A) := \sigma(A) \cup \left\{ z \in \mathbb{C} : \|(A-z)^{-1}\| \ge \frac{1}{\varepsilon} \right\}.$$ #### The question • Does $\Sigma_{\varepsilon}(A) = \overline{\sigma_{\varepsilon}(A)}$ hold? • let A be a closed densely defined operator in a Banach space \mathcal{X} #### Pseudospectrum $$\sigma_{\varepsilon}(A) := \sigma(A) \cup \left\{ z \in \mathbb{C} : \|(A-z)^{-1}\| \ge \frac{1}{\varepsilon} \right\}$$ Another definition with the non-strict inequality \geq $$\Sigma_{\varepsilon}(A) := \sigma(A) \cup \left\{ z \in \mathbb{C} : \|(A-z)^{-1}\| \ge \frac{1}{\varepsilon} \right\}.$$ #### The question • Does $\Sigma_{\varepsilon}(A) = \overline{\sigma_{\varepsilon}(A)}$ hold? ### The question differently Let M > 0 and $A \in \mathcal{C}(\mathcal{X})$. Can $$\{z \in \rho(A) : ||(A-z)^{-1}|| = M\}$$ have an open subset in \mathbb{C} ? Resolvent as a holomorphic function - recall: $(A-z)^{-1}$ is a holomorphic function on $\rho(A)$ - use the maximum modulus principle? #### Maximum modulus principle Let f be holomorphic on a connected open subset Ω of \mathbb{C} . Let $z_0 \in \Omega$ and $|f(z)| \leq |f(z_0)|$ for all z in a neighborhood of z_0 . Then f is constant on Ω . $$A(z) = \begin{pmatrix} z & 0 \\ 0 & 1 \end{pmatrix}$$ - ||A(z)|| = 1 for $|z| \le 1$ - but $(A-z)^{-1}$ is a very special function... ### The question differently Let M > 0 and $A \in \mathcal{C}(\mathcal{X})$. Can $$\{z \in \rho(A) : ||(A-z)^{-1}|| = M\}$$ have an open subset in \mathbb{C} ? #### Resolvent as a holomorphic function - recall: $(A-z)^{-1}$ is a holomorphic function on $\rho(A)$ - use the maximum modulus principle? #### Maximum modulus principle Let f be holomorphic on a connected open subset Ω of \mathbb{C} . Let $z_0 \in \Omega$ and $|f(z)| \leq |f(z_0)|$ for all z in a neighborhood of z_0 . Then f is constant on Ω . $$A(z) = \begin{pmatrix} z & 0 \\ 0 & 1 \end{pmatrix}$$ - ||A(z)|| = 1 for $|z| \le 1$ - but $(A-z)^{-1}$ is a very special function... ### The question differently Let M > 0 and $A \in \mathcal{C}(\mathcal{X})$. Can $$\{z \in \rho(A) : ||(A-z)^{-1}|| = M\}$$ have an open subset in \mathbb{C} ? #### Resolvent as a holomorphic function - recall: $(A-z)^{-1}$ is a holomorphic function on $\rho(A)$ - use the maximum modulus principle? ### Maximum modulus principle Let f be holomorphic on a connected open subset Ω of \mathbb{C} . Let $z_0 \in \Omega$ and $|f(z)| \leq |f(z_0)|$ for all z in a neighborhood of z_0 . Then f is constant on Ω . $$A(z) = \begin{pmatrix} z & 0 \\ 0 & 1 \end{pmatrix}$$ - ||A(z)|| = 1 for $|z| \le 1$ - but $(A-z)^{-1}$ is a very special function... ### The question differently Let M > 0 and $A \in \mathcal{C}(\mathcal{X})$. Can $$\{z \in \rho(A) : ||(A-z)^{-1}|| = M\}$$ have an open subset in \mathbb{C} ? #### Resolvent as a holomorphic function - recall: $(A-z)^{-1}$ is a holomorphic function on $\rho(A)$ - use the maximum modulus principle? ### Maximum modulus principle Let f be holomorphic on a connected open subset Ω of \mathbb{C} . Let $z_0 \in \Omega$ and $|f(z)| \leq |f(z_0)|$ for all z in a neighborhood of z_0 . Then f is constant on Ω . $$A(z) = \begin{pmatrix} z & 0 \\ 0 & 1 \end{pmatrix}$$ - ||A(z)|| = 1 for $|z| \le 1$ - but $(A-z)^{-1}$ is a very special function... ### The question differently Let M > 0 and $A \in \mathcal{C}(\mathcal{X})$. Can $$\{z \in \rho(A) : ||(A-z)^{-1}|| = M\}$$ have an open subset in \mathbb{C} ? #### Resolvent as a holomorphic function - recall: $(A-z)^{-1}$ is a holomorphic function on $\rho(A)$ - use the maximum modulus principle? ### Maximum modulus principle Let f be holomorphic on a connected open subset Ω of \mathbb{C} . Let $z_0 \in \Omega$ and $|f(z)| \leq |f(z_0)|$ for all z in a neighborhood of z_0 . Then f is constant on Ω . $$A(z) = \begin{pmatrix} z & 0 \\ 0 & 1 \end{pmatrix}$$ - ||A(z)|| = 1 for $|z| \le 1$ - but $(A-z)^{-1}$ is a very special function... ### Uniformly convex Banach space A Banach space $\mathcal X$ is uniformly convex, if for every $\varepsilon>0$ exists $\delta>0$ such that for all $x,y\in\mathcal X$ with $\|x\|=\|y\|=1$: $$||x - y|| \ge \varepsilon \implies \left\| \frac{1}{2} (x + y) \right\| \le 1 - \delta$$ • geometrically: the unit ball is "uniformly round" #### Uniformly convex Banach space A Banach space $\mathcal X$ is uniformly convex, if for every $\varepsilon>0$ exists $\delta>0$ such that for all $x,y\in\mathcal X$ with $\|x\|=\|y\|=1$: $$||x - y|| \ge \varepsilon \implies \left\| \frac{1}{2} (x + y) \right\| \le 1 - \delta$$ • geometrically: the unit ball is "uniformly round" #### Uniformly convex Banach space A Banach space $\mathcal X$ is uniformly convex, if for every $\varepsilon>0$ exists $\delta>0$ such that for all $x,y\in\mathcal X$ with $\|x\|=\|y\|=1$: $$||x - y|| \ge \varepsilon \implies \left\| \frac{1}{2} (x + y) \right\| \le 1 - \delta$$ geometrically: the unit ball is "uniformly round" ### Uniformly convex Banach space A Banach space \mathcal{X} is uniformly convex, if for every $\varepsilon > 0$ exists $\delta > 0$ such that for all $x, y \in \mathcal{X}$ with ||x|| = ||y|| = 1: $$||x - y|| \ge \varepsilon \implies \left\| \frac{1}{2} (x + y) \right\| \le 1 - \delta$$ geometrically: the unit ball is "uniformly round" • any Hilbert space is uniformly convex (polarization identity) #### Uniformly convex Banach space A Banach space $\mathcal X$ is uniformly convex, if for every $\varepsilon>0$ exists $\delta>0$ such that for all $x,y\in\mathcal X$ with $\|x\|=\|y\|=1$: $$||x - y|| \ge \varepsilon \implies \left\| \frac{1}{2} (x + y) \right\| \le 1 - \delta$$ geometrically: the unit ball is "uniformly round" • any Hilbert space is uniformly convex (polarization identity) # Various other convexity - \mathcal{X} a Banach space and $A \in \mathcal{C}(\mathcal{X})$ - $\lambda \mapsto \|(A-\lambda)^{-1}\|$ cannot be constant on an open subset $\Omega \subset \rho(A)$ if - i) Globevnik³: $A \in \mathcal{B}(\mathcal{X})$ and Ω belongs to the unbounded component of $\rho(A)$ - ii) $A \in \mathcal{B}(\mathcal{X})$ - Globevnik⁶ if \mathcal{X} is complex uniformly convex (e.g. Hilbert space, L^p -space with $1 \leq p < \infty$) - Daniluk (1994) for Hilbert spaces - Böttcher-Grudsky-Silbermann⁴ for L^p -spaces with 1 - Harrabi⁵ if \mathcal{X} finite-dimensional - Shargorodsky^o if \mathcal{X} or \mathcal{X}^* is complex uniformly convex (covers also $p = \infty$) - iii) A generates a C_0 semigroup - Shargorodsky 7 if $\mathcal X$ or $\mathcal X^*$ is complex uniformly convex - iv) A has compact resolvent - Davies-Shargorodsky⁸ if \mathcal{X} or \mathcal{X}^* is complex strictly convex (e.g. if \mathcal{X} or \mathcal{X}^* complex uniformly convex) ³J. Globevnik, *Illinois J. Math.* 20 (1976), pp. 503-506. ⁴A. Böttcher, S. M. Grudsky, and B. Silbermann. New York J. Math. 3 (1997), pp. 1-31. ⁵ A Harrabi RAIRO
Modél Math Anal Numér 32 (1998) pp. 671-680 ⁶E. Shargorodsky, Bull. Lond. Math. Soc. 40 (2008), pp. 493–504. ⁷E. Shargorodsky, Bull. Lond. Math. Soc. 42 (2010), pp. 1031–1034. ⁸E. B. Davies and E. Shargorodsky. *Mathematika* online first (2015) - \mathcal{X} a Banach space and $A \in \mathcal{C}(\mathcal{X})$ - $\lambda \mapsto \|(A \lambda)^{-1}\|$ cannot be constant on an open subset $\Omega \subset \rho(A)$ if - i) Globevnik³: $A \in \mathcal{B}(\mathcal{X})$ and Ω belongs to the unbounded component of $\rho(A)$ - ii) $A \in \mathscr{B}(\mathcal{X})$ - Globevnik⁶ if $\mathcal X$ is complex uniformly convex (e.g. Hilbert space, L^p -space with $1 \le p < \infty$) - Daniluk (1994) for Hilbert spaces - Böttcher-Grudsky-Silbermann⁴ for L^p -spaces with 1 - Harrabi⁵ if \mathcal{X} finite-dimensional - Shargorodsky⁶ if \mathcal{X} or \mathcal{X}^* is complex uniformly convex (covers also $p = \infty$ - iii) A generates a C_0 semigroup - Shargorodsky 7 if $\mathcal X$ or $\mathcal X^*$ is complex uniformly convex - iv) A has compact resolvent - Davies-Shargorodsky⁸ if \(\mathcal{X} \) or \(\mathcal{X}^* \) is complex strictly convex (e.g. if \(\mathcal{X} \) or \(\mathcal{X}^* \) complex uniformly convex) ³J. Globevnik. *Illinois J. Math.* 20 (1976), pp. 503-506. ⁴A. Böttcher, S. M. Grudsky, and B. Silbermann. New York J. Math. 3 (1997), pp. 1-31. ⁵A. Harrabi. RAIRO Modél. Math. Anal. Numér. 32 (1998), pp. 671–680. ⁶E. Shargorodsky, Bull. Lond. Math. Soc. 40 (2008), pp. 493–504. ⁷E. Shargorodsky. Bull. Lond. Math. Soc. 42 (2010), pp. 1031–1034 ⁸E. B. Davies and E. Shargorodsky. Mathematika online first (2015) - \mathcal{X} a Banach space and $A \in \mathcal{C}(\mathcal{X})$ - $\lambda \mapsto \|(A \lambda)^{-1}\|$ cannot be constant on an open subset $\Omega \subset \rho(A)$ if - i) Globevnik³: $A \in \mathcal{B}(\mathcal{X})$ and Ω belongs to the unbounded component of $\rho(A)$ - ii) $A \in \mathscr{B}(\mathcal{X})$ - Globevnik⁶ if $\mathcal X$ is complex uniformly convex (e.g. Hilbert space, L^p -space with $1 \le p < \infty$) - Daniluk (1994) for Hilbert spaces - Böttcher-Grudsky-Silbermann⁴ for L^p -spaces with 1 - Harrabi⁵ if \mathcal{X} finite-dimensional - Shargorodsky^o if \mathcal{X} or \mathcal{X}^* is complex uniformly convex (covers also $p = \infty$) - ii) A generates a C_0 semigroup - Shargorodsky' if \mathcal{X} or \mathcal{X}^* is complex uniformly convex - iv) A has compact resolvent - Davies-Shargorodsky⁸ if \(\mathcal{X} \) or \(\mathcal{X}^* \) is complex strictly convex (e.g. if \(\mathcal{X} \) or \(\mathcal{X}^* \) complex uniformly convex) ³J. Globevnik. *Illinois J. Math.* 20 (1976), pp. 503-506. ⁴A. Böttcher, S. M. Grudsky, and B. Silbermann. New York J. Math. 3 (1997), pp. 1-31. ⁵A. Harrabi. RAIRO Modél. Math. Anal. Numér. 32 (1998), pp. 671–680. ⁶E. Shargorodsky, Bull. Lond. Math. Soc. 40 (2008), pp. 493–504. ⁷E. Shargorodsky, Bull. Lond. Math. Soc. 42 (2010), pp. 1031–1034 ⁸E. B. Davies and E. Shargorodsky. Mathematika online first (2015) - \mathcal{X} a Banach space and $A \in \mathcal{C}(\mathcal{X})$ - $\lambda \mapsto \|(A \lambda)^{-1}\|$ cannot be constant on an open subset $\Omega \subset \rho(A)$ if - i) Globevnik³: $A \in \mathcal{B}(\mathcal{X})$ and Ω belongs to the unbounded component of $\rho(A)$ - ii) $A \in \mathscr{B}(\mathcal{X})$ - Globevnik⁶ if \mathcal{X} is complex uniformly convex (e.g. Hilbert space, L^p -space with $1 \leq p < \infty$) - Daniluk (1994) for Hilbert spaces - Böttcher-Grudsky-Silbermann⁴ for L^p -spaces with 1 - Harrabi⁵ if \mathcal{X} finite-dimensional - Shargorodsky of \mathcal{X} if \mathcal{X} or \mathcal{X}^* is complex uniformly convex (covers also $p=\infty$) - iii) A generates a C_0 semigroup - Shargorodsky' if \mathcal{X} or \mathcal{X}^* is complex uniformly convex - iv) A has compact resolvent - Davies-Shargorodsky⁸ if X or X* is complex strictly convex (e.g. if X or X* complex uniformly convex) ³J. Globevnik. *Illinois J. Math.* 20 (1976), pp. 503-506. ⁴A. Böttcher, S. M. Grudsky, and B. Silbermann. New York J. Math. 3 (1997), pp. 1–31. ^o A. Harrabi. *RAIRO Modél. Math. Anal. Numér.* 32 (1998), pp. 671–680 ⁶E. Shargorodsky. *Bull. Lond. Math. Soc.* 40 (2008), pp. 493–504. ⁷E. Shargorodsky. Bull. Lond. Math. Soc. 42 (2010), pp. 1031–1034. ⁸E B Davies and E Shargorodsky Mathematika online first (2015) - \mathcal{X} a Banach space and $A \in \mathcal{C}(\mathcal{X})$ - $\lambda \mapsto \|(A \lambda)^{-1}\|$ cannot be constant on an open subset $\Omega \subset \rho(A)$ if - i) Globevnik³: $A \in \mathcal{B}(\mathcal{X})$ and Ω belongs to the unbounded component of $\rho(A)$ - ii) $A \in \mathscr{B}(\mathcal{X})$ - Globevnik⁶ if $\mathcal X$ is complex uniformly convex (e.g. Hilbert space, L^p -space with $1 \le p < \infty$) - Daniluk (1994) for Hilbert spaces - Böttcher-Grudsky-Silbermann⁴ for L^p -spaces with 1 - Harrabi⁵ if \mathcal{X} finite-dimensional - Shargorodsky of \mathcal{X} of \mathcal{X}^* is complex uniformly convex (covers also $p=\infty$) - iii) A generates a C_0 semigroup - Shargorodsky 7 if $\mathcal X$ or $\mathcal X^*$ is complex uniformly convex - iv) A has compact resolvent - Davies-Shargorodsky⁸ if X or X* is complex strictly convex (e.g. if X or X* complex uniformly convex) ³J. Globevnik. *Illinois J. Math.* 20 (1976), pp. 503-506. ⁴A. Böttcher, S. M. Grudsky, and B. Silbermann. New York J. Math. 3 (1997), pp. 1–31. $^{^5\,\}mathrm{A.}$ Harrabi. RAIRO Modél. Math. Anal. Numér. 32 (1998), pp. 671–680. ⁷E. Shargorodsky, Bull. Lond. Math. Soc. 42 (2010), pp. 1031–1034. ⁸E. B. Davies and E. Shargorodsky, Mathematika online first (2015). - \mathcal{X} a Banach space and $A \in \mathcal{C}(\mathcal{X})$ - $\lambda \mapsto \|(A \lambda)^{-1}\|$ cannot be constant on an open subset $\Omega \subset \rho(A)$ if - i) Globevnik³: $A \in \mathcal{B}(\mathcal{X})$ and Ω belongs to the unbounded component of $\rho(A)$ - ii) $A \in \mathscr{B}(\mathcal{X})$ - Globevnik⁶ if $\mathcal X$ is complex uniformly convex (e.g. Hilbert space, L^p -space with $1 \le p < \infty$) - Daniluk (1994) for Hilbert spaces - Böttcher-Grudsky-Silbermann⁴ for L^p -spaces with 1 - $Harrabi^5$ if X finite-dimensional - Shargorodsky 6 if ${\mathcal X}$ or ${\mathcal X}^*$ is complex uniformly convex (covers also $p=\infty$) - iii) A generates a C_0 semigroup - Shargorodsky' if \mathcal{X} or \mathcal{X}^* is complex uniformly convex - iv) A has compact resolvent - Davies-Shargorodsky⁸ if \(\mathcal{X} \) or \(\mathcal{X}^* \) is complex strictly convex (e.g. if \(\mathcal{X} \) or \(\mathcal{X}^* \) complex uniformly convex) ³J. Globevnik. *Illinois J. Math.* 20 (1976), pp. 503-506. ⁴A. Böttcher, S. M. Grudsky, and B. Silbermann. New York J. Math. 3 (1997), pp. 1–31. ⁵A. Harrabi. RAIRO Modél. Math. Anal. Numér. 32 (1998), pp. 671-680. ⁶E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493–504. ⁷E. Shargorodsky. Bull. Lond. Math. Soc. 42 (2010), pp. 1031–1034 ⁸E. B. Davies and E. Shargorodsky, *Mathematika* online first (2015). - \mathcal{X} a Banach space and $A \in \mathcal{C}(\mathcal{X})$ - $\lambda \mapsto \|(A \lambda)^{-1}\|$ cannot be constant on an open subset $\Omega \subset \rho(A)$ if - i) Globevnik³: $A \in \mathcal{B}(\mathcal{X})$ and Ω belongs to the unbounded component of $\rho(A)$ - ii) $A \in \mathscr{B}(\mathcal{X})$ - Globevnik⁶ if \mathcal{X} is complex uniformly convex (e.g. Hilbert space, L^p -space with $1 \leq p < \infty$) - Daniluk (1994) for Hilbert spaces - Böttcher-Grudsky-Silbermann⁴ for L^p -spaces with 1 - $Harrabi^5$ if X finite-dimensional - Shargorodsky 6 if ${\mathcal X}$ or ${\mathcal X}^*$ is complex uniformly convex (covers also $p=\infty$) - iii) A generates a C_0 semigroup - Shargorodsky 7 if $\mathcal X$ or $\mathcal X^*$ is complex uniformly convex - v) A has compact resolvent - Davies-Shargorodsky⁸ if \mathcal{X} or \mathcal{X}^* is complex strictly convex (e.g. if \mathcal{X} or \mathcal{X}^* complex uniformly convex) ³J. Globevnik. *Illinois J. Math.* 20 (1976), pp. 503-506. ⁴A. Böttcher, S. M. Grudsky, and B. Silbermann. New York J. Math. 3 (1997), pp. 1–31. ⁵A. Harrabi. RAIRO Modél. Math. Anal. Numér. 32 (1998), pp. 671–680. ⁶E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493-504. ⁷E. Shargorodsky. Bull. Lond. Math. Soc. 42 (2010), pp. 1031–1034. ⁸E. B. Davies and E. Shargorodsky. *Mathematika* online first (2015) - \mathcal{X} a Banach space and $A \in \mathcal{C}(\mathcal{X})$ - $\lambda \mapsto \|(A \lambda)^{-1}\|$ cannot be constant on an open subset $\Omega \subset \rho(A)$ if - i) Globevnik³: $A \in \mathcal{B}(\mathcal{X})$ and Ω belongs to the unbounded component of $\rho(A)$ - ii) $A \in \mathcal{B}(\mathcal{X})$ - Globevnik⁶ if \mathcal{X} is complex uniformly convex (e.g. Hilbert space, L^p -space with $1 \leq p < \infty$) - Daniluk (1994) for Hilbert spaces - Böttcher-Grudsky-Silbermann⁴ for L^p -spaces with 1 - Harrabi⁵ if \mathcal{X} finite-dimensional - Shargorodsky 6 if $\mathcal X$ or $\mathcal X^*$ is complex uniformly convex (covers also $p=\infty$) - iii) A generates a C_0 semigroup - Shargorodsky 7 if $\mathcal X$ or $\mathcal X^*$ is complex uniformly convex - iv) A has compact resolvent - Davies-Shargorodsky⁸ if \mathcal{X} or \mathcal{X}^* is complex strictly convex (e.g. if \mathcal{X} or \mathcal{X}^* complex uniformly convex) ³J. Globevnik, *Illinois J. Math.* 20 (1976), pp. 503–506. ⁴A. Böttcher, S. M. Grudsky, and B. Silbermann. New York J. Math. 3 (1997), pp. 1–31. ⁵A. Harrabi. RAIRO Modél. Math. Anal. Numér. 32 (1998), pp. 671-680. ⁶E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493–504. ⁷E. Shargorodsky. Bull. Lond. Math. Soc. 42 (2010), pp. 1031–1034. ⁸E. B. Davies and E. Shargorodsky. *Mathematika* online first (2015). - $\alpha_k := k + 1$ and $\beta_k := 1 +
1/\alpha_k, k \in \mathbb{N}$ - 2×2 blocks $$B_k := \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix}, \quad k \in \mathbb{N},$$ - operator in $\ell^2(\mathbb{N})$: $A := \operatorname{diag}(B_1, B_2, B_3, \dots)$ - $\sigma(A) = \bigcup_{k \in \mathbb{N}} \sigma(B_k) = \{ \pm \sqrt{k+2} : k \in \mathbb{N} \}$ - inverse of the block $$(B_k - \lambda)^{-1} = \frac{1}{\alpha_k \beta_k - \lambda^2} \begin{pmatrix} \lambda & \alpha_k \\ \beta_k & \lambda \end{pmatrix}$$ • for $$|\lambda| < 1$$: $\lim_{k \to \infty} \|(B_k - \lambda)^{-1}\| = \left\| \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\| = 1$ • for $$|\lambda| < 1/2$$: $$\|(B_k - \lambda)^{-1}\| \le \frac{1}{\alpha_k \beta_k - |\lambda|^2} \left(\left\| \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right\| + \left\| \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix} \right\| \right)$$ $$= \frac{|\lambda| + \alpha_k}{\alpha_k \beta_k - |\lambda|^2} \le \frac{1/2 + \alpha_k}{\alpha_k \beta_k - 1/4} = \frac{1/2 + \alpha_k}{3/4 + \alpha_k} < 1$$ ⁹E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493–504. - $\alpha_k := k + 1$ and $\beta_k := 1 + 1/\alpha_k, k \in \mathbb{N}$ - 2×2 blocks $$B_k := \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix}, \quad k \in \mathbb{N},$$ - operator in $\ell^2(\mathbb{N})$: $A := \operatorname{diag}(B_1, B_2, B_3, \dots)$ - $\sigma(A) = \bigcup_{k \in \mathbb{N}} \sigma(B_k) = \{ \pm \sqrt{k+2} : k \in \mathbb{N} \}$ - inverse of the block $$(B_k - \lambda)^{-1} = \frac{1}{\alpha_k \beta_k - \lambda^2} \begin{pmatrix} \lambda & \alpha_k \\ \beta_k & \lambda \end{pmatrix}$$ • for $$|\lambda| < 1$$: $\lim_{k \to \infty} \|(B_k - \lambda)^{-1}\| = \left\| \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\| = 1$ • for $$|\lambda| < 1/2$$: $$\|(B_k - \lambda)^{-1}\| \le \frac{1}{\alpha_k \beta_k - |\lambda|^2} \left(\left\| \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right\| + \left\| \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix} \right\| \right)$$ $$= \frac{|\lambda| + \alpha_k}{\alpha_k \beta_k - |\lambda|^2} \le \frac{1/2 + \alpha_k}{\alpha_k \beta_k - 1/4} = \frac{1/2 + \alpha_k}{3/4 + \alpha_k} < 1$$ ⁹E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493–504. - $\alpha_k := k + 1$ and $\beta_k := 1 + 1/\alpha_k, k \in \mathbb{N}$ - 2×2 blocks $$B_k := \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix}, \quad k \in \mathbb{N},$$ - operator in $\ell^2(\mathbb{N})$: $A := \operatorname{diag}(B_1, B_2, B_3, \dots)$ - $\sigma(A) = \bigcup_{k \in \mathbb{N}} \sigma(B_k) = \{ \pm \sqrt{k+2} : k \in \mathbb{N} \}$ - inverse of the block $$(B_k - \lambda)^{-1} = \frac{1}{\alpha_k \beta_k - \lambda^2} \begin{pmatrix} \lambda & \alpha_k \\ \beta_k & \lambda \end{pmatrix}$$ • for $$|\lambda| < 1$$: $$\lim_{k \to \infty} \|(B_k - \lambda)^{-1}\| = \left\| \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\| = 1$$ • for $$|\lambda| < 1/2$$: $$\|(B_k - \lambda)^{-1}\| \le \frac{1}{\alpha_k \beta_k - |\lambda|^2} \left(\left\| \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right\| + \left\| \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix} \right\| \right)$$ $$= \frac{|\lambda| + \alpha_k}{\alpha_k \beta_k - |\lambda|^2} \le \frac{1/2 + \alpha_k}{\alpha_k \beta_k - 1/4} = \frac{1/2 + \alpha_k}{3/4 + \alpha_k} < 1$$ ⁹E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493–504. - $\alpha_k := k + 1$ and $\beta_k := 1 + 1/\alpha_k, k \in \mathbb{N}$ - 2×2 blocks $$B_k := \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix}, \quad k \in \mathbb{N},$$ - operator in $\ell^2(\mathbb{N})$: $A := \operatorname{diag}(B_1, B_2, B_3, \dots)$ - $\sigma(A) = \bigcup_{k \in \mathbb{N}} \sigma(B_k) = \{ \pm \sqrt{k+2} : k \in \mathbb{N} \}$ - inverse of the block $$(B_k - \lambda)^{-1} = \frac{1}{\alpha_k \beta_k - \lambda^2} \begin{pmatrix} \lambda & \alpha_k \\ \beta_k & \lambda \end{pmatrix}$$ • for $$|\lambda| < 1$$: $$\lim_{k \to \infty} \|(B_k - \lambda)^{-1}\| = \left\| \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\| = 1$$ • for $$|\lambda| < 1/2$$: $$\|(B_k - \lambda)^{-1}\| \le \frac{1}{\alpha_k \beta_k - |\lambda|^2} \left(\left\| \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right\| + \left\| \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix} \right\| \right)$$ $$= \frac{|\lambda| + \alpha_k}{\alpha_k \beta_k - |\lambda|^2} \le \frac{1/2 + \alpha_k}{\alpha_k \beta_k - 1/4} = \frac{1/2 + \alpha_k}{3/4 + \alpha_k} < 1$$ ⁹E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493–504. • $$\alpha_k := k+1$$ and $\beta_k := 1+1/\alpha_k, k \in \mathbb{N}$ • 2×2 blocks $$B_k := \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix}, \quad k \in \mathbb{N},$$ - operator in $\ell^2(\mathbb{N})$: $A := \operatorname{diag}(B_1, B_2, B_3, \dots)$ - $\sigma(A) = \bigcup_{k \in \mathbb{N}} \sigma(B_k) = \{ \pm \sqrt{k+2} : k \in \mathbb{N} \}$ - inverse of the block $$(B_k - \lambda)^{-1} = \frac{1}{\alpha_k \beta_k - \lambda^2} \begin{pmatrix} \lambda & \alpha_k \\ \beta_k & \lambda \end{pmatrix}$$ • for $$|\lambda| < 1$$: $$\lim_{k \to \infty} \|(B_k - \lambda)^{-1}\| = \left\| \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\| = 1$$ • for $$|\lambda| < 1/2$$: $$\|(B_k - \lambda)^{-1}\| \le \frac{1}{\alpha_k \beta_k - |\lambda|^2} \left(\left\| \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right\| + \left\| \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix} \right\| \right)$$ $$= \frac{|\lambda| + \alpha_k}{\alpha_k \beta_k - |\lambda|^2} \le \frac{1/2 + \alpha_k}{\alpha_k \beta_k - 1/4} = \frac{1/2 + \alpha_k}{3/4 + \alpha_k} < 1$$ ⁹E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493–504. ### Example with constant resolvent norm - operator in $\ell^2(\mathbb{N})$: $A = \operatorname{diag}(B_1, B_2, B_3, \dots)$ - for $|\lambda| < 1/2$: $$||A|| = \sup_{k \in \mathbb{N}} ||(B_k - \lambda)^{-1}|| = 1$$ $$\forall \lambda \in \rho(A), \quad \|(A-\lambda)^{-1}\| \ge 1$$ #### Example with constant resolvent norm - operator in $\ell^2(\mathbb{N})$: $A = \operatorname{diag}(B_1, B_2, B_3, \dots)$ - for $|\lambda| < 1/2$: $$||A|| = \sup_{k \in \mathbb{N}} ||(B_k - \lambda)^{-1}|| = 1$$ #### Numerics • it seems that $$\forall \lambda \in \rho(A), \quad \|(A - \lambda)^{-1}\| \ge 1$$ ### Theorem [S. Bögli & PS, 2014] Let \mathcal{X} be a complex uniformly convex Banach space, $A \in \mathcal{C}(\mathcal{X})$. If there exist an open subset $\Omega \subset \rho(A)$ and a constant M > 0 such that $$\|(A - \lambda)^{-1}\| = M, \quad \lambda \in \Omega,$$ then $$\forall \lambda \in \rho(A), \quad \|(A - \lambda)^{-1}\| \ge M.$$ Sketch of the proof - $F(\lambda) := (A \lambda)^{-1}$ is analytic function with $||F(\cdot)|| \equiv M$ on Ω - take $\lambda_0 \in \Omega$ and $\{e_k\}_k \subset \mathcal{H}$ with $||e_k|| = 1$ and $||(A \lambda_0)^{-1} e_k|| \to M$ - Globevnik & Vidav¹⁰: $||F'(\lambda_0)e_k|| \to 0$ - the 1st resolvent identity twice: $$(A - \lambda)^{-1} e_k = (A - \lambda_0)^{-1} e_k + (\lambda - \lambda_0) \left(I + (\lambda - \lambda_0) (A - \lambda)^{-1} \right) \underbrace{(A - \lambda_0)^{-2} e_k}_{}$$ hence $$\|(A-\lambda)^{-1}\| \ge \lim_{k\to\infty} \|(A-\lambda)^{-1}e_k\| = \lim_{k\to\infty} \|(A-\lambda_0)^{-1}e_k\| = M$$ ¹⁰ J. Globevnik and I. Vidav. J. Funct. Anal. 15 (1974), pp. 394–403. ### Theorem [S. Bögli & PS, 2014] Let \mathcal{X} be a complex uniformly convex Banach space, $A \in \mathcal{C}(\mathcal{X})$. If there exist an open subset $\Omega \subset \rho(A)$ and a constant M > 0 such that $$\|(A - \lambda)^{-1}\| = M, \quad \lambda \in \Omega,$$ then $$\forall \lambda \in \rho(A), \quad \|(A - \lambda)^{-1}\| \ge M$$. #### Sketch of the proof - $F(\lambda) := (A \lambda)^{-1}$ is analytic function with $\|F(\cdot)\| \equiv M$ on Ω - take $\lambda_0 \in \Omega$ and $\{e_k\}_k \subset \mathcal{H}$ with $||e_k|| = 1$ and $||(A \lambda_0)^{-1} e_k|| \to M$. - Globevnik & Vidav¹⁰: $||F'(\lambda_0)e_k|| \to 0$ - the 1st resolvent identity twice: $$(A - \lambda)^{-1} e_k = (A - \lambda_0)^{-1} e_k + (\lambda - \lambda_0) \left(I + (\lambda - \lambda_0) (A - \lambda)^{-1} \right) \underbrace{(A - \lambda_0)^{-2} e_k}_{\text{hones}}$$ hence $$\|(A-\lambda)^{-1}\| \ge \lim_{k\to\infty} \|(A-\lambda)^{-1}e_k\| = \lim_{k\to\infty} \|(A-\lambda_0)^{-1}e_k\| = M$$ ¹⁰J. Globevnik and I. Vidav. J. Funct. Anal. 15 (1974), pp. 394–403. Let \mathcal{X} be a complex uniformly convex Banach space, $A \in \mathcal{C}(\mathcal{X})$. If there exist an open subset $\Omega \subset \rho(A)$ and a constant M > 0 such that $$\|(A-\lambda)^{-1}\| = M, \quad \lambda \in \Omega,$$ then $$\forall \lambda \in \rho(A), \quad \|(A - \lambda)^{-1}\| \ge M.$$ ## Sketch of the proof - $F(\lambda) := (A \lambda)^{-1}$ is analytic function with $\|F(\cdot)\| \equiv M$ on Ω - take $\lambda_0 \in \Omega$ and $\{e_k\}_k \subset \mathcal{H}$ with $||e_k|| = 1$ and $||(A \lambda_0)^{-1} e_k|| \to M$. - Globevnik & Vidav¹⁰: $||F'(\lambda_0)e_k|| \to 0$ - the 1st resolvent identity twice: $$(A - \lambda)^{-1} e_k = (A - \lambda_0)^{-1} e_k + (\lambda - \lambda_0) \left(I + (\lambda - \lambda_0) (A - \lambda)^{-1} \right) \underbrace{(A - \lambda_0)^{-2} e_k}_{\text{A banes}}$$ hence $$\|(A-\lambda)^{-1}\| \ge \lim_{k\to\infty} \|(A-\lambda)^{-1}e_k\| = \lim_{k\to\infty} \|(A-\lambda_0)^{-1}e_k\| = M$$ ¹⁰J. Globevnik and I. Vidav. J. Funct. Anal. 15 (1974), pp. 394–403. Let \mathcal{X} be a complex uniformly convex Banach space, $A \in \mathcal{C}(\mathcal{X})$. If there exist an open subset $\Omega \subset \rho(A)$ and a constant M > 0 such that $$\|(A - \lambda)^{-1}\| = M, \quad \lambda \in \Omega,$$ then $$\forall \lambda \in \rho(A), \quad \|(A - \lambda)^{-1}\| \ge M.$$ ## Sketch of the proof - $F(\lambda) := (A \lambda)^{-1}$ is analytic function with $||F(\cdot)|| \equiv M$ on Ω - take $\lambda_0
\in \Omega$ and $\{e_k\}_k \subset \mathcal{H}$ with $||e_k|| = 1$ and $||(A \lambda_0)^{-1} e_k|| \to M$. - Globevnik & Vidav¹⁰: $||F'(\lambda_0)e_k|| \to 0$ - the 1st resolvent identity twice: $$(A - \lambda)^{-1} e_k = (A - \lambda_0)^{-1} e_k + (\lambda - \lambda_0) \left(I + (\lambda - \lambda_0) (A - \lambda)^{-1} \right) \underbrace{(A - \lambda_0)^{-2} e_k}_{\text{hones}}$$ hence $$\|(A-\lambda)^{-1}\| \ge \lim_{k\to\infty} \|(A-\lambda)^{-1}e_k\| = \lim_{k\to\infty} \|(A-\lambda_0)^{-1}e_k\| = M$$ $^{^{\}mathbf{10}}\,\mathrm{J}.$ Globevnik and I. Vidav. J. Funct. Anal. 15 (1974), pp. 394–403. Let \mathcal{X} be a complex uniformly convex Banach space, $A \in \mathcal{C}(\mathcal{X})$. If there exist an open subset $\Omega \subset \rho(A)$ and a constant M > 0 such that $$\|(A - \lambda)^{-1}\| = M, \quad \lambda \in \Omega,$$ then $$\forall \lambda \in \rho(A), \quad \|(A - \lambda)^{-1}\| \ge M$$. ## Sketch of the proof - $F(\lambda) := (A \lambda)^{-1}$ is analytic function with $||F(\cdot)|| \equiv M$ on Ω - take $\lambda_0 \in \Omega$ and $\{e_k\}_k \subset \mathcal{H}$ with $||e_k|| = 1$ and $||(A \lambda_0)^{-1} e_k|| \to M$. - Globevnik & Vidav¹⁰: $||F'(\lambda_0)e_k|| \to 0$ - the 1st resolvent identity twice: the 1st resolvent identity twice. $$(A - \lambda)^{-1} e_k = (A - \lambda_0)^{-1} e_k + (\lambda - \lambda_0) \left(I + (\lambda - \lambda_0)(A - \lambda)^{-1} \right) \underbrace{(A - \lambda_0)^{-2} e_k}_{BPCO}$$ $$\|(A-\lambda)^{-1}\| \ge \lim_{k\to\infty} \|(A-\lambda)^{-1}e_k\| = \lim_{k\to\infty} \|(A-\lambda_0)^{-1}e_k\| = M$$ ¹⁰ J. Globevnik and I. Vidav. J. Funct. Anal. 15 (1974), pp. 394–403. Let \mathcal{X} be a complex uniformly convex Banach space, $A \in \mathcal{C}(\mathcal{X})$. If there exist an open subset $\Omega \subset \rho(A)$ and a constant M > 0 such that $$\|(A - \lambda)^{-1}\| = M, \quad \lambda \in \Omega,$$ then $$\forall \lambda \in \rho(A), \quad \|(A - \lambda)^{-1}\| \ge M$$. ### Sketch of the proof - $F(\lambda) := (A \lambda)^{-1}$ is analytic function with $||F(\cdot)|| \equiv M$ on Ω - take $\lambda_0 \in \Omega$ and $\{e_k\}_k \subset \mathcal{H}$ with $||e_k|| = 1$ and $||(A \lambda_0)^{-1} e_k|| \to M$. - Globevnik & Vidav¹⁰: $||F'(\lambda_0)e_k|| \to 0$ - the 1st resolvent identity twice: $$(A - \lambda)^{-1} e_k = (A - \lambda_0)^{-1} e_k + (\lambda - \lambda_0) \left(I + (\lambda - \lambda_0)(A - \lambda)^{-1} \right) \underbrace{(A - \lambda_0)^{-2} e_k}_{DV(A)}$$ hence hence $$\|(A-\lambda)^{-1}\| \ge \lim_{h\to\infty} \|(A-\lambda)^{-1}e_k\| = \lim_{h\to\infty} \|(A-\lambda_0)^{-1}e_k\| = M$$ ¹⁰ J. Globevnik and I. Vidav. J. Funct. Anal. 15 (1974), pp. 394–403. #### Corrolaries i) If there exists a path $\gamma:[0,\infty)\to\rho(A)$ such that $$\lim_{s \to \infty} |\gamma(s)| = \infty, \quad \lim_{s \to \infty} \|(A - \gamma(s))^{-1}\| = 0$$ then resolvent norm cannot be constant on any open subset of $\rho(A)$. ii) This applies if $A \in \mathcal{B}(\mathcal{X})$ since $$||(A - \lambda)^{-1}|| \le (|\lambda| - ||A||)^{-1}, \quad |\lambda| > ||A||.$$ iii) This applies if A generates a C_0 semigroup since, by Hille-Yosida Theorem, $$\exists C > 0, \ \omega \in \mathbb{R} : \quad \|(A - \lambda)^{-1}\| \le C(\lambda - \omega)^{-1}, \quad \lambda \in (\omega, +\infty)$$ ### Corrolaries i) If there exists a path $\gamma:[0,\infty)\to\rho(A)$ such that $$\lim_{s \to \infty} |\gamma(s)| = \infty, \quad \lim_{s \to \infty} \|(A - \gamma(s))^{-1}\| = 0,$$ then resolvent norm cannot be constant on any open subset of $\rho(A)$. ii) This applies if $A \in \mathcal{B}(\mathcal{X})$ since $$||(A - \lambda)^{-1}|| \le (|\lambda| - ||A||)^{-1}, \quad |\lambda| > ||A||.$$ iii) This applies if A generates a C_0 semigroup since, by Hille-Yosida Theorem $$\exists C > 0, \, \omega \in \mathbb{R} : \quad ||(A - \lambda)^{-1}|| < C(\lambda - \omega)^{-1}, \quad \lambda \in (\omega, +\infty).$$ #### Corrolaries i) If there exists a path $\gamma:[0,\infty)\to\rho(A)$ such that $$\lim_{s \to \infty} |\gamma(s)| = \infty, \quad \lim_{s \to \infty} \|(A - \gamma(s))^{-1}\| = 0$$ then resolvent norm cannot be constant on any open subset of $\rho(A)$. ii) This applies if $A \in \mathcal{B}(\mathcal{X})$ since $$||(A - \lambda)^{-1}|| \le (|\lambda| - ||A||)^{-1}, \quad |\lambda| > ||A||.$$ iii) This applies if A generates a C_0 semigroup since, by Hille-Yosida Theorem, $$\exists C > 0, \ \omega \in \mathbb{R}: \quad \|(A - \lambda)^{-1}\| \le C(\lambda - \omega)^{-1}, \quad \lambda \in (\omega, +\infty).$$ $$T := \begin{pmatrix} 0 & f(A) \\ A & 0 \end{pmatrix}$$ in $\mathcal{H} \oplus \mathcal{H}$ - $A = A^* > 0$ in \mathcal{H} with discrete spectrum, $f : \mathbb{R} \to \mathbb{R}$ continuous - for $A = \Delta$ in $L^2(\mathbb{R}^d)$ and f(x) = 1: T is the generator of wave equation - a) $\lim_{x \to +\infty} f(x) = 0 \implies \rho(T) = \emptyset$ - b) $\lim_{x \to +\infty} f(x) = C > 0$ and $f(x) \ge C \implies \text{constant } \|(T-z)^{-1}\| \text{ on } \Omega \subset \rho(T)$ - Shargorodsky example: A = diag(2, 3, 4, ...) and f(x) = 1 + 1/x - c) $f(x) = |x|^{\beta}, \ \beta \in (0,1) \implies ||(T re^{i\phi})^{-1}|| = \mathcal{O}(r^{-2\beta/(\beta+1)}) \text{ if } \phi \notin \{0,\pi\}.$ - decay $\implies \|(T-z)^{-1}\|$ is not constant on any open set - decay not sufficient to generate a C_0 semigroup $$T := \begin{pmatrix} 0 & f(A) \\ A & 0 \end{pmatrix}$$ in $\mathcal{H} \oplus \mathcal{H}$ - $A = A^* > 0$ in \mathcal{H} with discrete spectrum, $f : \mathbb{R} \to \mathbb{R}$ continuous - for $A = \Delta$ in $L^2(\mathbb{R}^d)$ and f(x) = 1: T is the generator of wave equation - a) $\lim_{x \to +\infty} f(x) = 0 \implies \rho(T) = \emptyset$ - b) $\lim_{x \to +\infty} f(x) = C > 0$ and $f(x) \ge C \implies \text{constant } \|(T-z)^{-1}\| \text{ on } \Omega \subset \rho(T)$ - Shargorodsky example: A = diag(2, 3, 4, ...) and f(x) = 1 + 1/x - c) $f(x) = |x|^{\beta}, \ \beta \in (0,1) \implies ||(T re^{i\phi})^{-1}|| = \mathcal{O}(r^{-2\beta/(\beta+1)}) \text{ if } \phi \notin \{0,\pi\}$ - decay $\implies \|(T-z)^{-1}\|$ is not constant on any open set - decay not sufficient to generate a C_0 semigroup $$T := \begin{pmatrix} 0 & f(A) \\ A & 0 \end{pmatrix}$$ in $\mathcal{H} \oplus \mathcal{H}$ - $A = A^* > 0$ in \mathcal{H} with discrete spectrum, $f : \mathbb{R} \to \mathbb{R}$ continuous - for $A = \Delta$ in $L^2(\mathbb{R}^d)$ and f(x) = 1: T is the generator of wave equation - a) $\lim_{x \to +\infty} f(x) = 0 \implies \rho(T) = \emptyset$ - b) $\lim_{x \to +\infty} f(x) = C > 0$ and $f(x) \ge C \implies \text{constant } \|(T-z)^{-1}\| \text{ on } \Omega \subset \rho(T)$ - Shargorodsky example: A = diag(2, 3, 4, ...) and f(x) = 1 + 1/x - c) $f(x) = |x|^{\beta}, \ \beta \in (0,1) \implies ||(T re^{i\phi})^{-1}|| = \mathcal{O}(r^{-2\beta/(\beta+1)}) \text{ if } \phi \notin \{0,\pi\}.$ - decay $\implies \|(T-z)^{-1}\|$ is not constant on any open set - decay not sufficient to generate a C_0 semigroup $$T := \begin{pmatrix} 0 & f(A) \\ A & 0 \end{pmatrix}$$ in $\mathcal{H} \oplus \mathcal{H}$ - $A = A^* > 0$ in \mathcal{H} with discrete spectrum, $f : \mathbb{R} \to \mathbb{R}$ continuous - for $A = \Delta$ in $L^2(\mathbb{R}^d)$ and f(x) = 1: T is the generator of wave equation - a) $\lim_{x \to +\infty} f(x) = 0 \implies \rho(T) = \emptyset$ - b) $\lim_{x \to +\infty} f(x) = C > 0$ and $f(x) \ge C \implies \text{constant } \|(T-z)^{-1}\| \text{ on } \Omega \subset \rho(T)$ - Shargorodsky example: A = diag(2, 3, 4, ...) and f(x) = 1 + 1/x - c) $f(x) = |x|^{\beta}, \ \beta \in (0,1) \implies \|(T re^{i\phi})^{-1}\| = \mathcal{O}(r^{-2\beta/(\beta+1)}) \text{ if } \phi \notin \{0,\pi\}.$ - decay $\implies \|(T-z)^{-1}\|$ is not constant on any open set - decay not sufficient to generate a C_0 semigroup ### Hausdorff distance • $M, N \subset \mathbb{C}$ non-empty and compact $$d_{\mathbf{H}}(M,N) = \max \Big\{ \max_{z \in M} \mathrm{dist}(z,N), \max_{w \in N} \mathrm{dist}(w,M) \Big\}$$ #### Let - \mathcal{H} and \mathcal{H}_n , $n \in \mathbb{N}$, subspaces of a Hilbert space \mathcal{H}_0 - $A \in \mathcal{C}(\mathcal{H}), A_n \in \mathcal{C}(\mathcal{H}_n)$ densely defined - $K \subset \mathbb{C}$ compact and $\varepsilon > 0$ Ιf (a) $\exists \lambda_0 \in \cap_{n \in \mathbb{N}} \rho(A_n) \cap \rho(A)$: $$||(A_n - \lambda_0)^{-1} P_{\mathcal{H}_n} - (A - \lambda_0)^{-1} P_{\mathcal{H}}|| \to 0$$ - (b) $\lambda \mapsto \|(A \lambda)^{-1}\|$ is non-constant on any open subset of $\rho(A)$ - (c) $\overline{\sigma_{\varepsilon}(A) \cap K} = \overline{\sigma_{\varepsilon}(A)} \cap K \neq \emptyset$ then $$d_{\mathrm{H}}\left(\overline{\sigma_{\varepsilon}(A_n)}\cap K, \overline{\sigma_{\varepsilon}(A)}\cap K\right) \to 0, \quad n \to \infty$$ - previous result by Hansen (PhD thesis, 2008), problems on ∂K - ullet assumption on K can be avoided by using a different distance (suitable for unbounded sets) - assumption (b) cannot be omitted Let - \mathcal{H} and \mathcal{H}_n , $n \in \mathbb{N}$, subspaces of a Hilbert space \mathcal{H}_0 - $A \in \mathcal{C}(\mathcal{H}), A_n \in \mathcal{C}(\mathcal{H}_n)$ densely defined - $K \subset \mathbb{C}$ compact and $\varepsilon > 0$ $\quad \text{If} \quad$ (a) $\exists \lambda_0 \in \cap_{n \in \mathbb{N}} \rho(A_n) \cap \rho(A)$: $$\|(A_n - \lambda_0)^{-1} P_{\mathcal{H}_n} - (A - \lambda_0)^{-1} P_{\mathcal{H}}\| \to 0$$ (b) $\lambda \mapsto \|(A - \lambda)^{-1}\|$ is non-constant on any open subset of $\rho(A)$ (c) $$\overline{\sigma_{\varepsilon}(A) \cap K} = \overline{\sigma_{\varepsilon}(A)} \cap K \neq \emptyset$$ then $$d_{\mathrm{H}}\left(\overline{\sigma_{\varepsilon}(A_n)}\cap K, \overline{\sigma_{\varepsilon}(A)}\cap K\right)\to 0, \quad n\to\infty$$ - previous result by Hansen (PhD thesis, 2008), problems on ∂K - ullet assumption on K can be avoided by using a different distance (suitable for unbounded sets) - assumption (b)
cannot be omitted Let - \mathcal{H} and \mathcal{H}_n , $n \in \mathbb{N}$, subspaces of a Hilbert space \mathcal{H}_0 - $A \in \mathcal{C}(\mathcal{H}), A_n \in \mathcal{C}(\mathcal{H}_n)$ densely defined - $K \subset \mathbb{C}$ compact and $\varepsilon > 0$ $\quad \text{If} \quad$ (a) $\exists \lambda_0 \in \cap_{n \in \mathbb{N}} \rho(A_n) \cap \rho(A)$: $$\|(A_n - \lambda_0)^{-1} P_{\mathcal{H}_n} - (A - \lambda_0)^{-1} P_{\mathcal{H}}\| \to 0$$ (b) $\lambda \mapsto \|(A - \lambda)^{-1}\|$ is non-constant on any open subset of $\rho(A)$ (c) $$\overline{\sigma_{\varepsilon}(A) \cap K} = \overline{\sigma_{\varepsilon}(A)} \cap K \neq \emptyset$$ then $$d_{\mathrm{H}}\left(\overline{\sigma_{\varepsilon}(A_n)}\cap K, \overline{\sigma_{\varepsilon}(A)}\cap K\right) \to 0, \quad n \to \infty.$$ - previous result by Hansen (PhD thesis, 2008), problems on ∂K - \bullet assumption on K can be avoided by using a different distance (suitable for unbounded sets) - assumption (b) cannot be omitted Let - \mathcal{H} and \mathcal{H}_n , $n \in \mathbb{N}$, subspaces of a Hilbert space \mathcal{H}_0 - $A \in \mathcal{C}(\mathcal{H}), A_n \in \mathcal{C}(\mathcal{H}_n)$ densely defined - $K \subset \mathbb{C}$ compact and $\varepsilon > 0$ If (a) $\exists \lambda_0 \in \cap_{n \in \mathbb{N}} \rho(A_n) \cap \rho(A)$: $$\|(A_n - \lambda_0)^{-1} P_{\mathcal{H}_n} - (A - \lambda_0)^{-1} P_{\mathcal{H}}\| \to 0$$ (b) $\lambda \mapsto \|(A - \lambda)^{-1}\|$ is non-constant on any open subset of $\rho(A)$ (c) $$\overline{\sigma_{\varepsilon}(A) \cap K} = \overline{\sigma_{\varepsilon}(A)} \cap K \neq \emptyset$$ then $$d_{\mathrm{H}}\left(\overline{\sigma_{\varepsilon}(A_n)}\cap K, \overline{\sigma_{\varepsilon}(A)}\cap K\right)\to 0, \quad n\to\infty$$ - previous result by Hansen (PhD thesis, 2008), problems on ∂K - assumption on K can be avoided by using a different distance (suitable for unbounded sets) - assumption (b) cannot be omitted # Domain truncation for Schrödinger operators ## Operator $$T = -\Delta + Q$$ in $L^2(\mathbb{R}^d)$ ullet Q is complex valued and such that T has compact resolvent ### Approximations $$T_n = -\Delta + Q$$ in $L^2(\Omega_n)$ • $\{\Omega_n\}_n$ are expanding bounded Lipschitz domains that exhaust \mathbb{R}^d ; e.g. $$\Omega_n = B_n(0), \quad n \in \mathbb{N}$$ • Dirichlet, Neumann or Robin BC are imposed on $\partial \Omega_n$ #### Questions - Does $\sigma_{\varepsilon}(T_n)$ converge to $\sigma_{\varepsilon}(T)$? - Does $\sigma(T_n)$ converge to $\sigma(T)$? In what sense? # Domain truncation for Schrödinger operators ## Operator $$T = -\Delta + Q$$ in $L^2(\mathbb{R}^d)$ • Q is complex valued and such that T has compact resolvent ## Approximations $$T_n = -\Delta + Q$$ in $L^2(\Omega_n)$ • $\{\Omega_n\}_n$ are expanding bounded Lipschitz domains that exhaust \mathbb{R}^d ; e.g. $$\Omega_n = B_n(0), \quad n \in \mathbb{N}$$ • Dirichlet, Neumann or Robin BC are imposed on $\partial\Omega_n$ #### Questions - Does $\sigma_{\varepsilon}(T_n)$ converge to $\sigma_{\varepsilon}(T)$? - Does $\sigma(T_n)$ converge to $\sigma(T)$? In what sense? # Domain truncation for Schrödinger operators ## Operator $$T = -\Delta + Q$$ in $L^2(\mathbb{R}^d)$ \bullet Q is complex valued and such that T has compact resolvent ## Approximations $$T_n = -\Delta + Q$$ in $L^2(\Omega_n)$ • $\{\Omega_n\}_n$ are expanding bounded Lipschitz domains that exhaust \mathbb{R}^d ; e.g. $$\Omega_n = B_n(0), \quad n \in \mathbb{N}$$ • Dirichlet, Neumann or Robin BC are imposed on $\partial\Omega_n$ ### Questions - Does $\sigma_{\varepsilon}(T_n)$ converge to $\sigma_{\varepsilon}(T)$? - Does $\sigma(T_n)$ converge to $\sigma(T)$? In what sense? # Example domain truncation ### Rotated oscillator • operator: $$A := -\partial_x^2 + ix^2 \text{ in } L^2(\mathbb{R})$$ • spectrum: $$\sigma(A) = \left\{ e^{i\pi/4} (2k+1) : k = 0, 1, 2, \dots \right\}$$ #### Domain truncation sequence of operators: $$A_n := -\partial_x^2 + ix^2$$ in $L^2((-n, n)) + Dirichlet BC$ at $\pm n$ • $\Omega_n = (-n, n)$ ### Rotated oscillator • operator: $$A := -\partial_x^2 + ix^2 \text{ in } L^2(\mathbb{R})$$ • spectrum: $$\sigma(A) = \left\{ e^{\mathrm{i}\pi/4} (2k+1) : k = 0, 1, 2, \dots \right\}$$ ### Domain truncation • sequence of operators: $$A_n := -\partial_x^2 + \mathrm{i} x^2 \text{ in } L^2((-n,n)) \ + \ \mathrm{Dirichlet \ BC \ at} \ \pm n$$ • $$\Omega_n = (-n, n)$$ #### m-sectorial case - 1D example: $Q(x) = (1+i)x^2 + i\delta(x)$ - decomposition: $Q = Q_0 + W$ - ${\color{blue}\bullet}$ sectoriality: $L^1_{\rm loc}(\mathbb{R}^d)\ni Q_0$ has values in a sector with semi-angle $<\pi/2$ - 2 growth at ∞ : $|Q_0(x)| \to \infty$ as $|x| \to \infty$ - **8** W: possibly singular, but $-\Delta$ -form bounded with bound < 1 - the operator T introduced via closed sectorial forms #### non-m-sectorial case - 1D example: $Q(x) = ix^3 x^2 + ix^{-1/4}$ - decomposition: $Q = Q_0 U + W$, $\operatorname{Re} Q_0 \ge 0$, $U \ge 0$, $U \operatorname{Re} Q_0 = 0$ - \bullet regularity: $Q_0 \in W^{1,\infty}_{loc}(\mathbb{R}^d), U \in L^{\infty}_{loc}(\mathbb{R}^d)$ and $$|\nabla Q_0|^2 \le a + b|Q_0|^2$$, $U^2 \le a_U + b_U |\text{Im } Q_0|^2$ with $b_U < 1$ - $oldsymbol{0}$ growth at ∞ : $|Q_0(x)| \to \infty$ as $|x| \to \infty$ - 8 W: possibly singular, but $-\Delta$ -bounded with bound < 1 - operator T introduced via Kato's Thm. (m-accretive Schrödinger operators 11) ¹¹D. E. Edmunds and W. D. Evans. Spectral Theory and Differential Operators. Oxford University Press, 1987. #### m-sectorial case - 1D example: $Q(x) = (1 + i)x^2 + i\delta(x)$ - decomposition: $Q = Q_0 + W$ - ullet sectoriality: $L^1_{\mathrm{loc}}(\mathbb{R}^d) \ni Q_0$ has values in a sector with semi-angle $<\pi/2$ - 2 growth at ∞ : $|Q_0(x)| \to \infty$ as $|x| \to \infty$ - **8** W: possibly singular, but $-\Delta$ -form bounded with bound < 1 - the operator T introduced via closed sectorial forms #### non-m-sectorial case - 1D example: $Q(x) = ix^3 x^2 + ix^{-1/4}$ - decomposition: $Q = Q_0 U + W$, $\operatorname{Re} Q_0 \ge 0$, $U \ge 0$, $U \operatorname{Re} Q_0 = 0$ - regularity: $Q_0 \in W^{1,\infty}_{loc}(\mathbb{R}^d), U \in L^{\infty}_{loc}(\mathbb{R}^d)$ and $$|\nabla Q_0|^2 \le a + b|Q_0|^2$$, $U^2 \le a_U + b_U |\text{Im } Q_0|^2$ with $b_U < 1$ - **2** growth at ∞ : $|Q_0(x)| \to \infty$ as $|x| \to \infty$ - **3** W: possibly singular, but $-\Delta$ -bounded with bound < 1 - operator T introduced via Kato's Thm. (m-accretive Schrödinger operators 11) ¹¹D. E. Edmunds and W. D. Evans. Spectral Theory and Differential Operators. Oxford University Press, 1987. ### Generalized norm resolvent convergence $$\left\| (T_n - \lambda)^{-1} \chi_{\Omega_n} - (T - \lambda)^{-1} \right\| \to 0, \quad \lambda \in \rho(T).$$ Pseudospectral convergence $$d_{\mathrm{H}}\left(\overline{\sigma_{\varepsilon}(A_n)}\cap K, \overline{\sigma_{\varepsilon}(A)}\cap K\right)\to 0, \quad n\to\infty$$ Spectral convergence (spectral exactness) - Every eigenvalue λ of T is approximated: there is $\{\lambda_n\}_n$, $\lambda_n \in \sigma(T_n)$, such that $\lambda_n \to \lambda$ as $n \to \infty$ - **2** Every accumulation point of $\{\lambda_n\}_n$ is an eigenvalue of T: If $\{\lambda_n\}_n$, $\lambda_n \in \sigma(T_n)$, having an accumulation point λ , then $\lambda \in \sigma(T)$ Convergence rate for eigenvalues • $\lambda \in \sigma(T)$ simple & ϕ is the corresponding eigenfunction $$|\lambda - \lambda_n| \le C \|\phi \upharpoonright \mathbb{R}^d \setminus B_n(0)\|.$$ Generalized norm resolvent convergence $$\left\| (T_n - \lambda)^{-1} \chi_{\Omega_n} - (T - \lambda)^{-1} \right\| \to 0, \quad \lambda \in \rho(T).$$ Pseudospectral convergence $$d_{\mathrm{H}}\left(\overline{\sigma_{\varepsilon}(A_n)}\cap K, \overline{\sigma_{\varepsilon}(A)}\cap K\right)\to 0, \quad n\to\infty.$$ Spectral convergence (spectral exactness) - Every eigenvalue λ of T is approximated: there is $\{\lambda_n\}_n$, $\lambda_n \in \sigma(T_n)$, such that $\lambda_n \to \lambda$ as $n \to \infty$ - **2** Every accumulation point of $\{\lambda_n\}_n$ is an eigenvalue of T: If $\{\lambda_n\}_n$, $\lambda_n \in \sigma(T_n)$, having an accumulation point λ , then $\lambda \in \sigma(T)$ Convergence rate for eigenvalues • $\lambda \in \sigma(T)$ simple & ϕ is the corresponding eigenfunction $$|\lambda - \lambda_n| \le C \|\phi \upharpoonright \mathbb{R}^d \setminus B_n(0)\|$$ Generalized norm resolvent convergence $$\left\| (T_n - \lambda)^{-1} \chi_{\Omega_n} - (T - \lambda)^{-1} \right\| \to 0, \quad \lambda \in \rho(T).$$ Pseudospectral convergence $$d_{\mathrm{H}}\left(\overline{\sigma_{\varepsilon}(A_n)}\cap K, \overline{\sigma_{\varepsilon}(A)}\cap K\right)\to 0, \quad n\to\infty.$$ Spectral convergence (spectral exactness) - Every eigenvalue λ of T is approximated: there is $\{\lambda_n\}_n$, $\lambda_n \in \sigma(T_n)$, such that $\lambda_n \to \lambda$ as $n \to \infty$. - **2** Every accumulation point of $\{\lambda_n\}_n$ is an eigenvalue of T: If $\{\lambda_n\}_n$, $\lambda_n \in \sigma(T_n)$, having an accumulation point λ , then $\lambda \in \sigma(T)$. Convergence rate for eigenvalues • $\lambda \in \sigma(T)$ simple & ϕ is the corresponding eigenfunction $$|\lambda - \lambda_n| \le C \|\phi \upharpoonright \mathbb{R}^d \setminus B_n(0)\|$$ Generalized norm resolvent convergence $$\left\| (T_n - \lambda)^{-1} \chi_{\Omega_n} - (T - \lambda)^{-1} \right\| \to 0, \quad \lambda \in \rho(T).$$ Pseudospectral convergence $$d_{\mathrm{H}}\left(\overline{\sigma_{\varepsilon}(A_n)}\cap K, \overline{\sigma_{\varepsilon}(A)}\cap K\right)\to 0, \quad n\to\infty.$$ Spectral convergence (spectral exactness) - Every eigenvalue λ of T is approximated: there is $\{\lambda_n\}_n$, $\lambda_n \in \sigma(T_n)$, such that $\lambda_n \to \lambda$ as $n \to \infty$. - **2**
Every accumulation point of $\{\lambda_n\}_n$ is an eigenvalue of T: If $\{\lambda_n\}_n$, $\lambda_n \in \sigma(T_n)$, having an accumulation point λ , then $\lambda \in \sigma(T)$. ## Convergence rate for eigenvalues • $\lambda \in \sigma(T)$ simple & ϕ is the corresponding eigenfunction $$|\lambda - \lambda_n| \le C \|\phi \upharpoonright \mathbb{R}^d \setminus B_n(0)\|.$$ $$T = -\partial_x^2 + ix^3$$, $Dom(T) = W^{2,2}(\mathbb{R}) \cap Dom(x^3)$ • $\sigma(T) \subset \mathbb{R}$ • the first eigenvalue and the rate (Dirichlet BC) $$T = -\partial_x^2 + ix$$, $Dom(T) = W^{2,2}(\mathbb{R}) \cap Dom(x)$ - σ(T) = ∅ - all eigenvalues escape to infinity