Remarks on the convergence of pseudospectra

Petr Siegl

Mathematical Institute, University of Bern, Switzerland Nuclear Physics Institute ASCR, Řež, Czech Republic

http://gemma.ujf.cas.cz/~siegl/

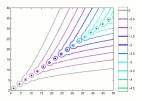
Based on

- [1] S. Bögli and P. Siegl: Remarks on the convergence of pseudospectra, Integral Equations and Operator Theory 80, 2014, 303-321, arXiv:1408.3431.
- [2] S. Bögli, P. Siegl, and C. Tretter: Approximations of spectra of Schrödinger operators with complex potentials on \mathbb{R}^d , 32 pp.

Outline

- 1. Constant resolvent norm
- 2. Convergence of pseudospectra & applications to Schrödinger operators

Rotated oscillator¹



$$A:=-\partial_x^2+\mathrm{i} x^2 \text{ in } L^2(\mathbb{R})$$

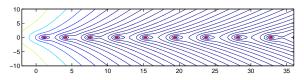
$$\sigma(A)=\left\{e^{\mathrm{i}\pi/4}(2k+1): k=0,1,2,\dots\right\}$$

$$\sigma_\varepsilon(A) \text{ much larger than } \varepsilon\text{-neighborhood of } \sigma(A)$$

Imaginary cubic oscillator²

$$A := -\partial_x^2 + ix^3 \text{ in } L^2(\mathbb{R})$$

 $\sigma(A)$ is discrete and real



¹L. Boulton. J. Operator Theory 47 (2002), pp. 413-429; E. B. Davies. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), pp. 585-599; P. Exner. J. Math. Phys. 24 (1983), pp. 1129-1135; K. Pravda-Starov. J. London Math. Soc. 73 (2006), pr.745-761.

²C. M. Bender and S. Boettcher. Phys. Rev. Lett. 80 (1998), pp. 5243–5246; D. Krejčiřík et al. arXiv:1402.1082. 2014; P. Siegl and D. Krejčiřík. Phys. Rev. D 86 (2012), 121702(R).

Pseudospectral convergence - motivation

Rotated oscillator

• operator:

$$A := -\partial_x^2 + ix^2 \text{ in } L^2(\mathbb{R})$$

• spectrum:

$$\sigma(A) = \left\{ e^{\mathrm{i}\pi/4} (2k+1) : k = 0, 1, 2, \dots \right\}$$

Domain truncation

sequence of operators:

$$A_n := -\partial_x^2 + ix^2$$
 in $L^2((-n, n)) + \text{Dirichlet BC at } \pm n$

• does $\sigma(A_n) \to \sigma(A)$?

Pseudospectral convergence - motivation

Rotated oscillator

• operator:

$$A := -\partial_x^2 + ix^2 \text{ in } L^2(\mathbb{R})$$

• spectrum:

$$\sigma(A) = \left\{ e^{i\pi/4} (2k+1) : k = 0, 1, 2, \dots \right\}$$

Domain truncation

• sequence of operators:

$$A_n := -\partial_x^2 + \mathrm{i} x^2$$
 in $L^2((-n, n))$ + Dirichlet BC at $\pm n$

• does $\sigma(A_n) \to \sigma(A)$?

• let A be a closed densely defined operator in a Banach space \mathcal{X}

Pseudospectrum

$$\sigma_{\varepsilon}(A) := \sigma(A) \cup \left\{ z \in \mathbb{C} : \|(A-z)^{-1}\| > \frac{1}{\varepsilon} \right\}$$

Another definition with the non-strict inequality \geq

$$\Sigma_{\varepsilon}(A) := \sigma(A) \cup \left\{ z \in \mathbb{C} : \|(A-z)^{-1}\| \ge \frac{1}{\varepsilon} \right\}$$

The question

• Does
$$\Sigma_{\varepsilon}(A) = \overline{\sigma_{\varepsilon}(A)}$$
 hold?

• let A be a closed densely defined operator in a Banach space \mathcal{X}

Pseudospectrum

$$\sigma_{\varepsilon}(A) := \sigma(A) \cup \left\{ z \in \mathbb{C} : \|(A-z)^{-1}\| \ge \frac{1}{\varepsilon} \right\}$$

Another definition with the non-strict inequality \geq

$$\Sigma_{\varepsilon}(A) := \sigma(A) \cup \left\{ z \in \mathbb{C} : \|(A-z)^{-1}\| \ge \frac{1}{\varepsilon} \right\}.$$

The question

• Does $\Sigma_{\varepsilon}(A) = \overline{\sigma_{\varepsilon}(A)}$ hold?

• let A be a closed densely defined operator in a Banach space \mathcal{X}

Pseudospectrum

$$\sigma_{\varepsilon}(A) := \sigma(A) \cup \left\{ z \in \mathbb{C} : \|(A-z)^{-1}\| \ge \frac{1}{\varepsilon} \right\}$$

Another definition with the non-strict inequality \geq

$$\Sigma_{\varepsilon}(A) := \sigma(A) \cup \left\{ z \in \mathbb{C} : \|(A-z)^{-1}\| \ge \frac{1}{\varepsilon} \right\}.$$

The question

• Does $\Sigma_{\varepsilon}(A) = \overline{\sigma_{\varepsilon}(A)}$ hold?

The question differently

Let M > 0 and $A \in \mathcal{C}(\mathcal{X})$.

Can
$$\{z \in \rho(A) : ||(A-z)^{-1}|| = M\}$$
 have an open subset in \mathbb{C} ?

Resolvent as a holomorphic function

- recall: $(A-z)^{-1}$ is a holomorphic function on $\rho(A)$
- use the maximum modulus principle?

Maximum modulus principle

Let f be holomorphic on a connected open subset Ω of \mathbb{C} . Let $z_0 \in \Omega$ and $|f(z)| \leq |f(z_0)|$ for all z in a neighborhood of z_0 . Then f is constant on Ω .

$$A(z) = \begin{pmatrix} z & 0 \\ 0 & 1 \end{pmatrix}$$

- ||A(z)|| = 1 for $|z| \le 1$
- but $(A-z)^{-1}$ is a very special function...

The question differently

Let M > 0 and $A \in \mathcal{C}(\mathcal{X})$.

Can
$$\{z \in \rho(A) : ||(A-z)^{-1}|| = M\}$$
 have an open subset in \mathbb{C} ?

Resolvent as a holomorphic function

- recall: $(A-z)^{-1}$ is a holomorphic function on $\rho(A)$
- use the maximum modulus principle?

Maximum modulus principle

Let f be holomorphic on a connected open subset Ω of \mathbb{C} . Let $z_0 \in \Omega$ and $|f(z)| \leq |f(z_0)|$ for all z in a neighborhood of z_0 . Then f is constant on Ω .

$$A(z) = \begin{pmatrix} z & 0 \\ 0 & 1 \end{pmatrix}$$

- ||A(z)|| = 1 for $|z| \le 1$
- but $(A-z)^{-1}$ is a very special function...

The question differently

Let M > 0 and $A \in \mathcal{C}(\mathcal{X})$.

Can
$$\{z \in \rho(A) : ||(A-z)^{-1}|| = M\}$$
 have an open subset in \mathbb{C} ?

Resolvent as a holomorphic function

- recall: $(A-z)^{-1}$ is a holomorphic function on $\rho(A)$
- use the maximum modulus principle?

Maximum modulus principle

Let f be holomorphic on a connected open subset Ω of \mathbb{C} . Let $z_0 \in \Omega$ and $|f(z)| \leq |f(z_0)|$ for all z in a neighborhood of z_0 . Then f is constant on Ω .

$$A(z) = \begin{pmatrix} z & 0 \\ 0 & 1 \end{pmatrix}$$

- ||A(z)|| = 1 for $|z| \le 1$
- but $(A-z)^{-1}$ is a very special function...

The question differently

Let M > 0 and $A \in \mathcal{C}(\mathcal{X})$.

Can
$$\{z \in \rho(A) : ||(A-z)^{-1}|| = M\}$$
 have an open subset in \mathbb{C} ?

Resolvent as a holomorphic function

- recall: $(A-z)^{-1}$ is a holomorphic function on $\rho(A)$
- use the maximum modulus principle?

Maximum modulus principle

Let f be holomorphic on a connected open subset Ω of \mathbb{C} . Let $z_0 \in \Omega$ and $|f(z)| \leq |f(z_0)|$ for all z in a neighborhood of z_0 . Then f is constant on Ω .

$$A(z) = \begin{pmatrix} z & 0 \\ 0 & 1 \end{pmatrix}$$

- ||A(z)|| = 1 for $|z| \le 1$
- but $(A-z)^{-1}$ is a very special function...

The question differently

Let M > 0 and $A \in \mathcal{C}(\mathcal{X})$.

Can
$$\{z \in \rho(A) : ||(A-z)^{-1}|| = M\}$$
 have an open subset in \mathbb{C} ?

Resolvent as a holomorphic function

- recall: $(A-z)^{-1}$ is a holomorphic function on $\rho(A)$
- use the maximum modulus principle?

Maximum modulus principle

Let f be holomorphic on a connected open subset Ω of \mathbb{C} . Let $z_0 \in \Omega$ and $|f(z)| \leq |f(z_0)|$ for all z in a neighborhood of z_0 . Then f is constant on Ω .

$$A(z) = \begin{pmatrix} z & 0 \\ 0 & 1 \end{pmatrix}$$

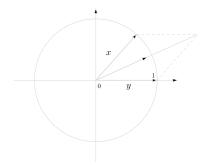
- ||A(z)|| = 1 for $|z| \le 1$
- but $(A-z)^{-1}$ is a very special function...

Uniformly convex Banach space

A Banach space $\mathcal X$ is uniformly convex, if for every $\varepsilon>0$ exists $\delta>0$ such that for all $x,y\in\mathcal X$ with $\|x\|=\|y\|=1$:

$$||x - y|| \ge \varepsilon \implies \left\| \frac{1}{2} (x + y) \right\| \le 1 - \delta$$

• geometrically: the unit ball is "uniformly round"

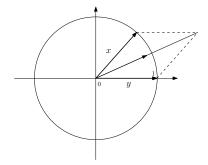


Uniformly convex Banach space

A Banach space $\mathcal X$ is uniformly convex, if for every $\varepsilon>0$ exists $\delta>0$ such that for all $x,y\in\mathcal X$ with $\|x\|=\|y\|=1$:

$$||x - y|| \ge \varepsilon \implies \left\| \frac{1}{2} (x + y) \right\| \le 1 - \delta$$

• geometrically: the unit ball is "uniformly round"

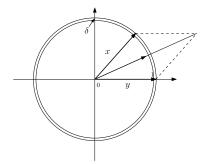


Uniformly convex Banach space

A Banach space $\mathcal X$ is uniformly convex, if for every $\varepsilon>0$ exists $\delta>0$ such that for all $x,y\in\mathcal X$ with $\|x\|=\|y\|=1$:

$$||x - y|| \ge \varepsilon \implies \left\| \frac{1}{2} (x + y) \right\| \le 1 - \delta$$

geometrically: the unit ball is "uniformly round"

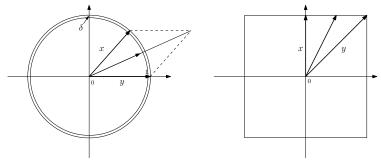


Uniformly convex Banach space

A Banach space \mathcal{X} is uniformly convex, if for every $\varepsilon > 0$ exists $\delta > 0$ such that for all $x, y \in \mathcal{X}$ with ||x|| = ||y|| = 1:

$$||x - y|| \ge \varepsilon \implies \left\| \frac{1}{2} (x + y) \right\| \le 1 - \delta$$

geometrically: the unit ball is "uniformly round"



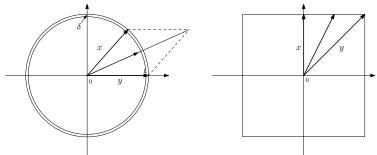
• any Hilbert space is uniformly convex (polarization identity)

Uniformly convex Banach space

A Banach space $\mathcal X$ is uniformly convex, if for every $\varepsilon>0$ exists $\delta>0$ such that for all $x,y\in\mathcal X$ with $\|x\|=\|y\|=1$:

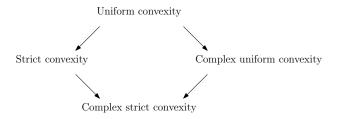
$$||x - y|| \ge \varepsilon \implies \left\| \frac{1}{2} (x + y) \right\| \le 1 - \delta$$

geometrically: the unit ball is "uniformly round"



• any Hilbert space is uniformly convex (polarization identity)

Various other convexity



- \mathcal{X} a Banach space and $A \in \mathcal{C}(\mathcal{X})$
- $\lambda \mapsto \|(A-\lambda)^{-1}\|$ cannot be constant on an open subset $\Omega \subset \rho(A)$ if
 - i) Globevnik³: $A \in \mathcal{B}(\mathcal{X})$ and Ω belongs to the unbounded component of $\rho(A)$
 - ii) $A \in \mathcal{B}(\mathcal{X})$
 - Globevnik⁶ if \mathcal{X} is complex uniformly convex (e.g. Hilbert space, L^p -space with $1 \leq p < \infty$)
 - Daniluk (1994) for Hilbert spaces
 - Böttcher-Grudsky-Silbermann⁴ for L^p -spaces with 1
 - Harrabi⁵ if \mathcal{X} finite-dimensional
 - Shargorodsky^o if \mathcal{X} or \mathcal{X}^* is complex uniformly convex (covers also $p = \infty$)
 - iii) A generates a C_0 semigroup
 - Shargorodsky 7 if $\mathcal X$ or $\mathcal X^*$ is complex uniformly convex
 - iv) A has compact resolvent
 - Davies-Shargorodsky⁸ if \mathcal{X} or \mathcal{X}^* is complex strictly convex (e.g. if \mathcal{X} or \mathcal{X}^* complex uniformly convex)

³J. Globevnik, *Illinois J. Math.* 20 (1976), pp. 503-506.

⁴A. Böttcher, S. M. Grudsky, and B. Silbermann. New York J. Math. 3 (1997), pp. 1-31.

⁵ A Harrabi RAIRO Modél Math Anal Numér 32 (1998) pp. 671-680

⁶E. Shargorodsky, Bull. Lond. Math. Soc. 40 (2008), pp. 493–504.

⁷E. Shargorodsky, Bull. Lond. Math. Soc. 42 (2010), pp. 1031–1034.

⁸E. B. Davies and E. Shargorodsky. *Mathematika* online first (2015)

- \mathcal{X} a Banach space and $A \in \mathcal{C}(\mathcal{X})$
- $\lambda \mapsto \|(A \lambda)^{-1}\|$ cannot be constant on an open subset $\Omega \subset \rho(A)$ if
 - i) Globevnik³: $A \in \mathcal{B}(\mathcal{X})$ and Ω belongs to the unbounded component of $\rho(A)$
 - ii) $A \in \mathscr{B}(\mathcal{X})$
 - Globevnik⁶ if $\mathcal X$ is complex uniformly convex (e.g. Hilbert space, L^p -space with $1 \le p < \infty$)
 - Daniluk (1994) for Hilbert spaces
 - Böttcher-Grudsky-Silbermann⁴ for L^p -spaces with 1
 - Harrabi⁵ if \mathcal{X} finite-dimensional
 - Shargorodsky⁶ if \mathcal{X} or \mathcal{X}^* is complex uniformly convex (covers also $p = \infty$
 - iii) A generates a C_0 semigroup
 - Shargorodsky 7 if $\mathcal X$ or $\mathcal X^*$ is complex uniformly convex
 - iv) A has compact resolvent
 - Davies-Shargorodsky⁸ if \(\mathcal{X} \) or \(\mathcal{X}^* \) is complex strictly convex (e.g. if \(\mathcal{X} \) or \(\mathcal{X}^* \) complex uniformly convex)

³J. Globevnik. *Illinois J. Math.* 20 (1976), pp. 503-506.

⁴A. Böttcher, S. M. Grudsky, and B. Silbermann. New York J. Math. 3 (1997), pp. 1-31.

⁵A. Harrabi. RAIRO Modél. Math. Anal. Numér. 32 (1998), pp. 671–680.

⁶E. Shargorodsky, Bull. Lond. Math. Soc. 40 (2008), pp. 493–504.

⁷E. Shargorodsky. Bull. Lond. Math. Soc. 42 (2010), pp. 1031–1034

⁸E. B. Davies and E. Shargorodsky. Mathematika online first (2015)

- \mathcal{X} a Banach space and $A \in \mathcal{C}(\mathcal{X})$
- $\lambda \mapsto \|(A \lambda)^{-1}\|$ cannot be constant on an open subset $\Omega \subset \rho(A)$ if
 - i) Globevnik³: $A \in \mathcal{B}(\mathcal{X})$ and Ω belongs to the unbounded component of $\rho(A)$
 - ii) $A \in \mathscr{B}(\mathcal{X})$
 - Globevnik⁶ if $\mathcal X$ is complex uniformly convex (e.g. Hilbert space, L^p -space with $1 \le p < \infty$)
 - Daniluk (1994) for Hilbert spaces
 - Böttcher-Grudsky-Silbermann⁴ for L^p -spaces with 1
 - Harrabi⁵ if \mathcal{X} finite-dimensional
 - Shargorodsky^o if \mathcal{X} or \mathcal{X}^* is complex uniformly convex (covers also $p = \infty$)
 - ii) A generates a C_0 semigroup
 - Shargorodsky' if \mathcal{X} or \mathcal{X}^* is complex uniformly convex
 - iv) A has compact resolvent
 - Davies-Shargorodsky⁸ if \(\mathcal{X} \) or \(\mathcal{X}^* \) is complex strictly convex (e.g. if \(\mathcal{X} \) or \(\mathcal{X}^* \) complex uniformly convex)

³J. Globevnik. *Illinois J. Math.* 20 (1976), pp. 503-506.

⁴A. Böttcher, S. M. Grudsky, and B. Silbermann. New York J. Math. 3 (1997), pp. 1-31.

⁵A. Harrabi. RAIRO Modél. Math. Anal. Numér. 32 (1998), pp. 671–680.

⁶E. Shargorodsky, Bull. Lond. Math. Soc. 40 (2008), pp. 493–504.

⁷E. Shargorodsky, Bull. Lond. Math. Soc. 42 (2010), pp. 1031–1034

⁸E. B. Davies and E. Shargorodsky. Mathematika online first (2015)

- \mathcal{X} a Banach space and $A \in \mathcal{C}(\mathcal{X})$
- $\lambda \mapsto \|(A \lambda)^{-1}\|$ cannot be constant on an open subset $\Omega \subset \rho(A)$ if
 - i) Globevnik³: $A \in \mathcal{B}(\mathcal{X})$ and Ω belongs to the unbounded component of $\rho(A)$
 - ii) $A \in \mathscr{B}(\mathcal{X})$
 - Globevnik⁶ if \mathcal{X} is complex uniformly convex (e.g. Hilbert space, L^p -space with $1 \leq p < \infty$)
 - Daniluk (1994) for Hilbert spaces
 - Böttcher-Grudsky-Silbermann⁴ for L^p -spaces with 1
 - Harrabi⁵ if \mathcal{X} finite-dimensional
 - Shargorodsky of \mathcal{X} if \mathcal{X} or \mathcal{X}^* is complex uniformly convex (covers also $p=\infty$)
 - iii) A generates a C_0 semigroup
 - Shargorodsky' if \mathcal{X} or \mathcal{X}^* is complex uniformly convex
 - iv) A has compact resolvent
 - Davies-Shargorodsky⁸ if X or X* is complex strictly convex (e.g. if X or X* complex uniformly convex)

³J. Globevnik. *Illinois J. Math.* 20 (1976), pp. 503-506.

⁴A. Böttcher, S. M. Grudsky, and B. Silbermann. New York J. Math. 3 (1997), pp. 1–31.

^o A. Harrabi. *RAIRO Modél. Math. Anal. Numér.* 32 (1998), pp. 671–680

⁶E. Shargorodsky. *Bull. Lond. Math. Soc.* 40 (2008), pp. 493–504.

⁷E. Shargorodsky. Bull. Lond. Math. Soc. 42 (2010), pp. 1031–1034.

⁸E B Davies and E Shargorodsky Mathematika online first (2015)

- \mathcal{X} a Banach space and $A \in \mathcal{C}(\mathcal{X})$
- $\lambda \mapsto \|(A \lambda)^{-1}\|$ cannot be constant on an open subset $\Omega \subset \rho(A)$ if
 - i) Globevnik³: $A \in \mathcal{B}(\mathcal{X})$ and Ω belongs to the unbounded component of $\rho(A)$
 - ii) $A \in \mathscr{B}(\mathcal{X})$
 - Globevnik⁶ if $\mathcal X$ is complex uniformly convex (e.g. Hilbert space, L^p -space with $1 \le p < \infty$)
 - Daniluk (1994) for Hilbert spaces
 - Böttcher-Grudsky-Silbermann⁴ for L^p -spaces with 1
 - Harrabi⁵ if \mathcal{X} finite-dimensional
 - Shargorodsky of \mathcal{X} of \mathcal{X}^* is complex uniformly convex (covers also $p=\infty$)
 - iii) A generates a C_0 semigroup
 - Shargorodsky 7 if $\mathcal X$ or $\mathcal X^*$ is complex uniformly convex
 - iv) A has compact resolvent
 - Davies-Shargorodsky⁸ if X or X* is complex strictly convex (e.g. if X or X* complex uniformly convex)

³J. Globevnik. *Illinois J. Math.* 20 (1976), pp. 503-506.

⁴A. Böttcher, S. M. Grudsky, and B. Silbermann. New York J. Math. 3 (1997), pp. 1–31.

 $^{^5\,\}mathrm{A.}$ Harrabi. RAIRO Modél. Math. Anal. Numér. 32 (1998), pp. 671–680.

⁷E. Shargorodsky, Bull. Lond. Math. Soc. 42 (2010), pp. 1031–1034.

⁸E. B. Davies and E. Shargorodsky, Mathematika online first (2015).

- \mathcal{X} a Banach space and $A \in \mathcal{C}(\mathcal{X})$
- $\lambda \mapsto \|(A \lambda)^{-1}\|$ cannot be constant on an open subset $\Omega \subset \rho(A)$ if
 - i) Globevnik³: $A \in \mathcal{B}(\mathcal{X})$ and Ω belongs to the unbounded component of $\rho(A)$
 - ii) $A \in \mathscr{B}(\mathcal{X})$
 - Globevnik⁶ if $\mathcal X$ is complex uniformly convex (e.g. Hilbert space, L^p -space with $1 \le p < \infty$)
 - Daniluk (1994) for Hilbert spaces
 - Böttcher-Grudsky-Silbermann⁴ for L^p -spaces with 1
 - $Harrabi^5$ if X finite-dimensional
 - Shargorodsky 6 if ${\mathcal X}$ or ${\mathcal X}^*$ is complex uniformly convex (covers also $p=\infty$)
 - iii) A generates a C_0 semigroup
 - Shargorodsky' if \mathcal{X} or \mathcal{X}^* is complex uniformly convex
 - iv) A has compact resolvent
 - Davies-Shargorodsky⁸ if \(\mathcal{X} \) or \(\mathcal{X}^* \) is complex strictly convex (e.g. if \(\mathcal{X} \) or \(\mathcal{X}^* \) complex uniformly convex)

³J. Globevnik. *Illinois J. Math.* 20 (1976), pp. 503-506.

⁴A. Böttcher, S. M. Grudsky, and B. Silbermann. New York J. Math. 3 (1997), pp. 1–31.

⁵A. Harrabi. RAIRO Modél. Math. Anal. Numér. 32 (1998), pp. 671-680.

⁶E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493–504.

⁷E. Shargorodsky. Bull. Lond. Math. Soc. 42 (2010), pp. 1031–1034

⁸E. B. Davies and E. Shargorodsky, *Mathematika* online first (2015).

- \mathcal{X} a Banach space and $A \in \mathcal{C}(\mathcal{X})$
- $\lambda \mapsto \|(A \lambda)^{-1}\|$ cannot be constant on an open subset $\Omega \subset \rho(A)$ if
 - i) Globevnik³: $A \in \mathcal{B}(\mathcal{X})$ and Ω belongs to the unbounded component of $\rho(A)$
 - ii) $A \in \mathscr{B}(\mathcal{X})$
 - Globevnik⁶ if \mathcal{X} is complex uniformly convex (e.g. Hilbert space, L^p -space with $1 \leq p < \infty$)
 - Daniluk (1994) for Hilbert spaces
 - Böttcher-Grudsky-Silbermann⁴ for L^p -spaces with 1
 - $Harrabi^5$ if X finite-dimensional
 - Shargorodsky 6 if ${\mathcal X}$ or ${\mathcal X}^*$ is complex uniformly convex (covers also $p=\infty$)
 - iii) A generates a C_0 semigroup
 - Shargorodsky 7 if $\mathcal X$ or $\mathcal X^*$ is complex uniformly convex
 - v) A has compact resolvent
 - Davies-Shargorodsky⁸ if \mathcal{X} or \mathcal{X}^* is complex strictly convex (e.g. if \mathcal{X} or \mathcal{X}^* complex uniformly convex)

³J. Globevnik. *Illinois J. Math.* 20 (1976), pp. 503-506.

⁴A. Böttcher, S. M. Grudsky, and B. Silbermann. New York J. Math. 3 (1997), pp. 1–31.

⁵A. Harrabi. RAIRO Modél. Math. Anal. Numér. 32 (1998), pp. 671–680.

⁶E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493-504.

⁷E. Shargorodsky. Bull. Lond. Math. Soc. 42 (2010), pp. 1031–1034.

⁸E. B. Davies and E. Shargorodsky. *Mathematika* online first (2015)

- \mathcal{X} a Banach space and $A \in \mathcal{C}(\mathcal{X})$
- $\lambda \mapsto \|(A \lambda)^{-1}\|$ cannot be constant on an open subset $\Omega \subset \rho(A)$ if
 - i) Globevnik³: $A \in \mathcal{B}(\mathcal{X})$ and Ω belongs to the unbounded component of $\rho(A)$
 - ii) $A \in \mathcal{B}(\mathcal{X})$
 - Globevnik⁶ if \mathcal{X} is complex uniformly convex (e.g. Hilbert space, L^p -space with $1 \leq p < \infty$)
 - Daniluk (1994) for Hilbert spaces
 - Böttcher-Grudsky-Silbermann⁴ for L^p -spaces with 1
 - Harrabi⁵ if \mathcal{X} finite-dimensional
 - Shargorodsky 6 if $\mathcal X$ or $\mathcal X^*$ is complex uniformly convex (covers also $p=\infty$)
 - iii) A generates a C_0 semigroup
 - Shargorodsky 7 if $\mathcal X$ or $\mathcal X^*$ is complex uniformly convex
 - iv) A has compact resolvent
 - Davies-Shargorodsky⁸ if \mathcal{X} or \mathcal{X}^* is complex strictly convex (e.g. if \mathcal{X} or \mathcal{X}^* complex uniformly convex)

³J. Globevnik, *Illinois J. Math.* 20 (1976), pp. 503–506.

⁴A. Böttcher, S. M. Grudsky, and B. Silbermann. New York J. Math. 3 (1997), pp. 1–31.

⁵A. Harrabi. RAIRO Modél. Math. Anal. Numér. 32 (1998), pp. 671-680.

⁶E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493–504.

⁷E. Shargorodsky. Bull. Lond. Math. Soc. 42 (2010), pp. 1031–1034.

⁸E. B. Davies and E. Shargorodsky. *Mathematika* online first (2015).

- $\alpha_k := k + 1$ and $\beta_k := 1 + 1/\alpha_k, k \in \mathbb{N}$
- 2×2 blocks

$$B_k := \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix}, \quad k \in \mathbb{N},$$

- operator in $\ell^2(\mathbb{N})$: $A := \operatorname{diag}(B_1, B_2, B_3, \dots)$
- $\sigma(A) = \bigcup_{k \in \mathbb{N}} \sigma(B_k) = \{ \pm \sqrt{k+2} : k \in \mathbb{N} \}$
- inverse of the block

$$(B_k - \lambda)^{-1} = \frac{1}{\alpha_k \beta_k - \lambda^2} \begin{pmatrix} \lambda & \alpha_k \\ \beta_k & \lambda \end{pmatrix}$$

• for
$$|\lambda| < 1$$
: $\lim_{k \to \infty} \|(B_k - \lambda)^{-1}\| = \left\| \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\| = 1$

• for
$$|\lambda| < 1/2$$
:

$$\|(B_k - \lambda)^{-1}\| \le \frac{1}{\alpha_k \beta_k - |\lambda|^2} \left(\left\| \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right\| + \left\| \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix} \right\| \right)$$

$$= \frac{|\lambda| + \alpha_k}{\alpha_k \beta_k - |\lambda|^2} \le \frac{1/2 + \alpha_k}{\alpha_k \beta_k - 1/4} = \frac{1/2 + \alpha_k}{3/4 + \alpha_k} < 1$$

⁹E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493–504.

- $\alpha_k := k + 1$ and $\beta_k := 1 + 1/\alpha_k, k \in \mathbb{N}$
- 2×2 blocks

$$B_k := \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix}, \quad k \in \mathbb{N},$$

- operator in $\ell^2(\mathbb{N})$: $A := \operatorname{diag}(B_1, B_2, B_3, \dots)$
- $\sigma(A) = \bigcup_{k \in \mathbb{N}} \sigma(B_k) = \{ \pm \sqrt{k+2} : k \in \mathbb{N} \}$
- inverse of the block

$$(B_k - \lambda)^{-1} = \frac{1}{\alpha_k \beta_k - \lambda^2} \begin{pmatrix} \lambda & \alpha_k \\ \beta_k & \lambda \end{pmatrix}$$

• for
$$|\lambda| < 1$$
: $\lim_{k \to \infty} \|(B_k - \lambda)^{-1}\| = \left\| \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\| = 1$

• for
$$|\lambda| < 1/2$$
:

$$\|(B_k - \lambda)^{-1}\| \le \frac{1}{\alpha_k \beta_k - |\lambda|^2} \left(\left\| \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right\| + \left\| \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix} \right\| \right)$$

$$= \frac{|\lambda| + \alpha_k}{\alpha_k \beta_k - |\lambda|^2} \le \frac{1/2 + \alpha_k}{\alpha_k \beta_k - 1/4} = \frac{1/2 + \alpha_k}{3/4 + \alpha_k} < 1$$

⁹E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493–504.

- $\alpha_k := k + 1$ and $\beta_k := 1 + 1/\alpha_k, k \in \mathbb{N}$
- 2×2 blocks

$$B_k := \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix}, \quad k \in \mathbb{N},$$

- operator in $\ell^2(\mathbb{N})$: $A := \operatorname{diag}(B_1, B_2, B_3, \dots)$
- $\sigma(A) = \bigcup_{k \in \mathbb{N}} \sigma(B_k) = \{ \pm \sqrt{k+2} : k \in \mathbb{N} \}$
- inverse of the block

$$(B_k - \lambda)^{-1} = \frac{1}{\alpha_k \beta_k - \lambda^2} \begin{pmatrix} \lambda & \alpha_k \\ \beta_k & \lambda \end{pmatrix}$$

• for
$$|\lambda| < 1$$
:
$$\lim_{k \to \infty} \|(B_k - \lambda)^{-1}\| = \left\| \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\| = 1$$

• for
$$|\lambda| < 1/2$$
:

$$\|(B_k - \lambda)^{-1}\| \le \frac{1}{\alpha_k \beta_k - |\lambda|^2} \left(\left\| \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right\| + \left\| \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix} \right\| \right)$$

$$= \frac{|\lambda| + \alpha_k}{\alpha_k \beta_k - |\lambda|^2} \le \frac{1/2 + \alpha_k}{\alpha_k \beta_k - 1/4} = \frac{1/2 + \alpha_k}{3/4 + \alpha_k} < 1$$

⁹E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493–504.

- $\alpha_k := k + 1$ and $\beta_k := 1 + 1/\alpha_k, k \in \mathbb{N}$
- 2×2 blocks

$$B_k := \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix}, \quad k \in \mathbb{N},$$

- operator in $\ell^2(\mathbb{N})$: $A := \operatorname{diag}(B_1, B_2, B_3, \dots)$
- $\sigma(A) = \bigcup_{k \in \mathbb{N}} \sigma(B_k) = \{ \pm \sqrt{k+2} : k \in \mathbb{N} \}$
- inverse of the block

$$(B_k - \lambda)^{-1} = \frac{1}{\alpha_k \beta_k - \lambda^2} \begin{pmatrix} \lambda & \alpha_k \\ \beta_k & \lambda \end{pmatrix}$$

• for
$$|\lambda| < 1$$
:
$$\lim_{k \to \infty} \|(B_k - \lambda)^{-1}\| = \left\| \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\| = 1$$

• for
$$|\lambda| < 1/2$$
:

$$\|(B_k - \lambda)^{-1}\| \le \frac{1}{\alpha_k \beta_k - |\lambda|^2} \left(\left\| \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right\| + \left\| \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix} \right\| \right)$$

$$= \frac{|\lambda| + \alpha_k}{\alpha_k \beta_k - |\lambda|^2} \le \frac{1/2 + \alpha_k}{\alpha_k \beta_k - 1/4} = \frac{1/2 + \alpha_k}{3/4 + \alpha_k} < 1$$

⁹E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493–504.

•
$$\alpha_k := k+1$$
 and $\beta_k := 1+1/\alpha_k, k \in \mathbb{N}$

• 2×2 blocks

$$B_k := \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix}, \quad k \in \mathbb{N},$$

- operator in $\ell^2(\mathbb{N})$: $A := \operatorname{diag}(B_1, B_2, B_3, \dots)$
- $\sigma(A) = \bigcup_{k \in \mathbb{N}} \sigma(B_k) = \{ \pm \sqrt{k+2} : k \in \mathbb{N} \}$
- inverse of the block

$$(B_k - \lambda)^{-1} = \frac{1}{\alpha_k \beta_k - \lambda^2} \begin{pmatrix} \lambda & \alpha_k \\ \beta_k & \lambda \end{pmatrix}$$

• for
$$|\lambda| < 1$$
:
$$\lim_{k \to \infty} \|(B_k - \lambda)^{-1}\| = \left\| \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\| = 1$$

• for
$$|\lambda| < 1/2$$
:

$$\|(B_k - \lambda)^{-1}\| \le \frac{1}{\alpha_k \beta_k - |\lambda|^2} \left(\left\| \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right\| + \left\| \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix} \right\| \right)$$

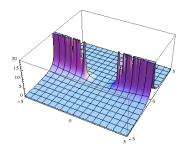
$$= \frac{|\lambda| + \alpha_k}{\alpha_k \beta_k - |\lambda|^2} \le \frac{1/2 + \alpha_k}{\alpha_k \beta_k - 1/4} = \frac{1/2 + \alpha_k}{3/4 + \alpha_k} < 1$$

⁹E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493–504.

Example with constant resolvent norm

- operator in $\ell^2(\mathbb{N})$: $A = \operatorname{diag}(B_1, B_2, B_3, \dots)$
- for $|\lambda| < 1/2$:

$$||A|| = \sup_{k \in \mathbb{N}} ||(B_k - \lambda)^{-1}|| = 1$$



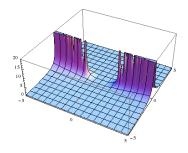
$$\forall \lambda \in \rho(A), \quad \|(A-\lambda)^{-1}\| \ge 1$$

Example with constant resolvent norm

- operator in $\ell^2(\mathbb{N})$: $A = \operatorname{diag}(B_1, B_2, B_3, \dots)$
- for $|\lambda| < 1/2$:

$$||A|| = \sup_{k \in \mathbb{N}} ||(B_k - \lambda)^{-1}|| = 1$$

Numerics



• it seems that

$$\forall \lambda \in \rho(A), \quad \|(A - \lambda)^{-1}\| \ge 1$$

Theorem [S. Bögli & PS, 2014]

Let \mathcal{X} be a complex uniformly convex Banach space, $A \in \mathcal{C}(\mathcal{X})$. If there exist an open subset $\Omega \subset \rho(A)$ and a constant M > 0 such that

$$\|(A - \lambda)^{-1}\| = M, \quad \lambda \in \Omega,$$

then

$$\forall \lambda \in \rho(A), \quad \|(A - \lambda)^{-1}\| \ge M.$$

Sketch of the proof

- $F(\lambda) := (A \lambda)^{-1}$ is analytic function with $||F(\cdot)|| \equiv M$ on Ω
- take $\lambda_0 \in \Omega$ and $\{e_k\}_k \subset \mathcal{H}$ with $||e_k|| = 1$ and $||(A \lambda_0)^{-1} e_k|| \to M$
- Globevnik & Vidav¹⁰: $||F'(\lambda_0)e_k|| \to 0$
- the 1st resolvent identity twice:

$$(A - \lambda)^{-1} e_k = (A - \lambda_0)^{-1} e_k + (\lambda - \lambda_0) \left(I + (\lambda - \lambda_0) (A - \lambda)^{-1} \right) \underbrace{(A - \lambda_0)^{-2} e_k}_{}$$

hence

$$\|(A-\lambda)^{-1}\| \ge \lim_{k\to\infty} \|(A-\lambda)^{-1}e_k\| = \lim_{k\to\infty} \|(A-\lambda_0)^{-1}e_k\| = M$$

¹⁰ J. Globevnik and I. Vidav. J. Funct. Anal. 15 (1974), pp. 394–403.

Theorem [S. Bögli & PS, 2014]

Let \mathcal{X} be a complex uniformly convex Banach space, $A \in \mathcal{C}(\mathcal{X})$. If there exist an open subset $\Omega \subset \rho(A)$ and a constant M > 0 such that

$$\|(A - \lambda)^{-1}\| = M, \quad \lambda \in \Omega,$$

then

$$\forall \lambda \in \rho(A), \quad \|(A - \lambda)^{-1}\| \ge M$$
.

Sketch of the proof

- $F(\lambda) := (A \lambda)^{-1}$ is analytic function with $\|F(\cdot)\| \equiv M$ on Ω
- take $\lambda_0 \in \Omega$ and $\{e_k\}_k \subset \mathcal{H}$ with $||e_k|| = 1$ and $||(A \lambda_0)^{-1} e_k|| \to M$.
- Globevnik & Vidav¹⁰: $||F'(\lambda_0)e_k|| \to 0$
- the 1st resolvent identity twice:

$$(A - \lambda)^{-1} e_k = (A - \lambda_0)^{-1} e_k + (\lambda - \lambda_0) \left(I + (\lambda - \lambda_0) (A - \lambda)^{-1} \right) \underbrace{(A - \lambda_0)^{-2} e_k}_{\text{hones}}$$

hence

$$\|(A-\lambda)^{-1}\| \ge \lim_{k\to\infty} \|(A-\lambda)^{-1}e_k\| = \lim_{k\to\infty} \|(A-\lambda_0)^{-1}e_k\| = M$$

¹⁰J. Globevnik and I. Vidav. J. Funct. Anal. 15 (1974), pp. 394–403.

Let \mathcal{X} be a complex uniformly convex Banach space, $A \in \mathcal{C}(\mathcal{X})$. If there exist an open subset $\Omega \subset \rho(A)$ and a constant M > 0 such that

$$\|(A-\lambda)^{-1}\| = M, \quad \lambda \in \Omega,$$

then

$$\forall \lambda \in \rho(A), \quad \|(A - \lambda)^{-1}\| \ge M.$$

Sketch of the proof

- $F(\lambda) := (A \lambda)^{-1}$ is analytic function with $\|F(\cdot)\| \equiv M$ on Ω
- take $\lambda_0 \in \Omega$ and $\{e_k\}_k \subset \mathcal{H}$ with $||e_k|| = 1$ and $||(A \lambda_0)^{-1} e_k|| \to M$.
- Globevnik & Vidav¹⁰: $||F'(\lambda_0)e_k|| \to 0$
- the 1st resolvent identity twice:

$$(A - \lambda)^{-1} e_k = (A - \lambda_0)^{-1} e_k + (\lambda - \lambda_0) \left(I + (\lambda - \lambda_0) (A - \lambda)^{-1} \right) \underbrace{(A - \lambda_0)^{-2} e_k}_{\text{A banes}}$$

hence

$$\|(A-\lambda)^{-1}\| \ge \lim_{k\to\infty} \|(A-\lambda)^{-1}e_k\| = \lim_{k\to\infty} \|(A-\lambda_0)^{-1}e_k\| = M$$

¹⁰J. Globevnik and I. Vidav. J. Funct. Anal. 15 (1974), pp. 394–403.

Let \mathcal{X} be a complex uniformly convex Banach space, $A \in \mathcal{C}(\mathcal{X})$. If there exist an open subset $\Omega \subset \rho(A)$ and a constant M > 0 such that

$$\|(A - \lambda)^{-1}\| = M, \quad \lambda \in \Omega,$$

then

$$\forall \lambda \in \rho(A), \quad \|(A - \lambda)^{-1}\| \ge M.$$

Sketch of the proof

- $F(\lambda) := (A \lambda)^{-1}$ is analytic function with $||F(\cdot)|| \equiv M$ on Ω
- take $\lambda_0 \in \Omega$ and $\{e_k\}_k \subset \mathcal{H}$ with $||e_k|| = 1$ and $||(A \lambda_0)^{-1} e_k|| \to M$.
- Globevnik & Vidav¹⁰: $||F'(\lambda_0)e_k|| \to 0$
- the 1st resolvent identity twice:

$$(A - \lambda)^{-1} e_k = (A - \lambda_0)^{-1} e_k + (\lambda - \lambda_0) \left(I + (\lambda - \lambda_0) (A - \lambda)^{-1} \right) \underbrace{(A - \lambda_0)^{-2} e_k}_{\text{hones}}$$

hence

$$\|(A-\lambda)^{-1}\| \ge \lim_{k\to\infty} \|(A-\lambda)^{-1}e_k\| = \lim_{k\to\infty} \|(A-\lambda_0)^{-1}e_k\| = M$$

 $^{^{\}mathbf{10}}\,\mathrm{J}.$ Globevnik and I. Vidav. J. Funct. Anal. 15 (1974), pp. 394–403.

Let \mathcal{X} be a complex uniformly convex Banach space, $A \in \mathcal{C}(\mathcal{X})$. If there exist an open subset $\Omega \subset \rho(A)$ and a constant M > 0 such that

$$\|(A - \lambda)^{-1}\| = M, \quad \lambda \in \Omega,$$

then

$$\forall \lambda \in \rho(A), \quad \|(A - \lambda)^{-1}\| \ge M$$
.

Sketch of the proof

- $F(\lambda) := (A \lambda)^{-1}$ is analytic function with $||F(\cdot)|| \equiv M$ on Ω
- take $\lambda_0 \in \Omega$ and $\{e_k\}_k \subset \mathcal{H}$ with $||e_k|| = 1$ and $||(A \lambda_0)^{-1} e_k|| \to M$.
- Globevnik & Vidav¹⁰: $||F'(\lambda_0)e_k|| \to 0$
- the 1st resolvent identity twice:

the 1st resolvent identity twice.
$$(A - \lambda)^{-1} e_k = (A - \lambda_0)^{-1} e_k + (\lambda - \lambda_0) \left(I + (\lambda - \lambda_0)(A - \lambda)^{-1} \right) \underbrace{(A - \lambda_0)^{-2} e_k}_{BPCO}$$

$$\|(A-\lambda)^{-1}\| \ge \lim_{k\to\infty} \|(A-\lambda)^{-1}e_k\| = \lim_{k\to\infty} \|(A-\lambda_0)^{-1}e_k\| = M$$

¹⁰ J. Globevnik and I. Vidav. J. Funct. Anal. 15 (1974), pp. 394–403.

Let \mathcal{X} be a complex uniformly convex Banach space, $A \in \mathcal{C}(\mathcal{X})$. If there exist an open subset $\Omega \subset \rho(A)$ and a constant M > 0 such that

$$\|(A - \lambda)^{-1}\| = M, \quad \lambda \in \Omega,$$

then

$$\forall \lambda \in \rho(A), \quad \|(A - \lambda)^{-1}\| \ge M$$
.

Sketch of the proof

- $F(\lambda) := (A \lambda)^{-1}$ is analytic function with $||F(\cdot)|| \equiv M$ on Ω
- take $\lambda_0 \in \Omega$ and $\{e_k\}_k \subset \mathcal{H}$ with $||e_k|| = 1$ and $||(A \lambda_0)^{-1} e_k|| \to M$.
- Globevnik & Vidav¹⁰: $||F'(\lambda_0)e_k|| \to 0$
- the 1st resolvent identity twice:

$$(A - \lambda)^{-1} e_k = (A - \lambda_0)^{-1} e_k + (\lambda - \lambda_0) \left(I + (\lambda - \lambda_0)(A - \lambda)^{-1} \right) \underbrace{(A - \lambda_0)^{-2} e_k}_{DV(A)}$$
hence

hence

$$\|(A-\lambda)^{-1}\| \ge \lim_{h\to\infty} \|(A-\lambda)^{-1}e_k\| = \lim_{h\to\infty} \|(A-\lambda_0)^{-1}e_k\| = M$$

¹⁰ J. Globevnik and I. Vidav. J. Funct. Anal. 15 (1974), pp. 394–403.

Corrolaries

i) If there exists a path $\gamma:[0,\infty)\to\rho(A)$ such that

$$\lim_{s \to \infty} |\gamma(s)| = \infty, \quad \lim_{s \to \infty} \|(A - \gamma(s))^{-1}\| = 0$$

then resolvent norm cannot be constant on any open subset of $\rho(A)$.

ii) This applies if $A \in \mathcal{B}(\mathcal{X})$ since

$$||(A - \lambda)^{-1}|| \le (|\lambda| - ||A||)^{-1}, \quad |\lambda| > ||A||.$$

iii) This applies if A generates a C_0 semigroup since, by Hille-Yosida Theorem,

$$\exists C > 0, \ \omega \in \mathbb{R} : \quad \|(A - \lambda)^{-1}\| \le C(\lambda - \omega)^{-1}, \quad \lambda \in (\omega, +\infty)$$

Corrolaries

i) If there exists a path $\gamma:[0,\infty)\to\rho(A)$ such that

$$\lim_{s \to \infty} |\gamma(s)| = \infty, \quad \lim_{s \to \infty} \|(A - \gamma(s))^{-1}\| = 0,$$

then resolvent norm cannot be constant on any open subset of $\rho(A)$.

ii) This applies if $A \in \mathcal{B}(\mathcal{X})$ since

$$||(A - \lambda)^{-1}|| \le (|\lambda| - ||A||)^{-1}, \quad |\lambda| > ||A||.$$

iii) This applies if A generates a C_0 semigroup since, by Hille-Yosida Theorem

$$\exists C > 0, \, \omega \in \mathbb{R} : \quad ||(A - \lambda)^{-1}|| < C(\lambda - \omega)^{-1}, \quad \lambda \in (\omega, +\infty).$$

Corrolaries

i) If there exists a path $\gamma:[0,\infty)\to\rho(A)$ such that

$$\lim_{s \to \infty} |\gamma(s)| = \infty, \quad \lim_{s \to \infty} \|(A - \gamma(s))^{-1}\| = 0$$

then resolvent norm cannot be constant on any open subset of $\rho(A)$.

ii) This applies if $A \in \mathcal{B}(\mathcal{X})$ since

$$||(A - \lambda)^{-1}|| \le (|\lambda| - ||A||)^{-1}, \quad |\lambda| > ||A||.$$

iii) This applies if A generates a C_0 semigroup since, by Hille-Yosida Theorem,

$$\exists C > 0, \ \omega \in \mathbb{R}: \quad \|(A - \lambda)^{-1}\| \le C(\lambda - \omega)^{-1}, \quad \lambda \in (\omega, +\infty).$$

$$T := \begin{pmatrix} 0 & f(A) \\ A & 0 \end{pmatrix}$$
 in $\mathcal{H} \oplus \mathcal{H}$

- $A = A^* > 0$ in \mathcal{H} with discrete spectrum, $f : \mathbb{R} \to \mathbb{R}$ continuous
- for $A = \Delta$ in $L^2(\mathbb{R}^d)$ and f(x) = 1: T is the generator of wave equation
- a) $\lim_{x \to +\infty} f(x) = 0 \implies \rho(T) = \emptyset$
- b) $\lim_{x \to +\infty} f(x) = C > 0$ and $f(x) \ge C \implies \text{constant } \|(T-z)^{-1}\| \text{ on } \Omega \subset \rho(T)$
 - Shargorodsky example: A = diag(2, 3, 4, ...) and f(x) = 1 + 1/x
- c) $f(x) = |x|^{\beta}, \ \beta \in (0,1) \implies ||(T re^{i\phi})^{-1}|| = \mathcal{O}(r^{-2\beta/(\beta+1)}) \text{ if } \phi \notin \{0,\pi\}.$
 - decay $\implies \|(T-z)^{-1}\|$ is not constant on any open set
 - decay not sufficient to generate a C_0 semigroup

$$T := \begin{pmatrix} 0 & f(A) \\ A & 0 \end{pmatrix}$$
 in $\mathcal{H} \oplus \mathcal{H}$

- $A = A^* > 0$ in \mathcal{H} with discrete spectrum, $f : \mathbb{R} \to \mathbb{R}$ continuous
- for $A = \Delta$ in $L^2(\mathbb{R}^d)$ and f(x) = 1: T is the generator of wave equation
- a) $\lim_{x \to +\infty} f(x) = 0 \implies \rho(T) = \emptyset$
- b) $\lim_{x \to +\infty} f(x) = C > 0$ and $f(x) \ge C \implies \text{constant } \|(T-z)^{-1}\| \text{ on } \Omega \subset \rho(T)$
 - Shargorodsky example: A = diag(2, 3, 4, ...) and f(x) = 1 + 1/x
- c) $f(x) = |x|^{\beta}, \ \beta \in (0,1) \implies ||(T re^{i\phi})^{-1}|| = \mathcal{O}(r^{-2\beta/(\beta+1)}) \text{ if } \phi \notin \{0,\pi\}$
 - decay $\implies \|(T-z)^{-1}\|$ is not constant on any open set
 - decay not sufficient to generate a C_0 semigroup

$$T := \begin{pmatrix} 0 & f(A) \\ A & 0 \end{pmatrix}$$
 in $\mathcal{H} \oplus \mathcal{H}$

- $A = A^* > 0$ in \mathcal{H} with discrete spectrum, $f : \mathbb{R} \to \mathbb{R}$ continuous
- for $A = \Delta$ in $L^2(\mathbb{R}^d)$ and f(x) = 1: T is the generator of wave equation
- a) $\lim_{x \to +\infty} f(x) = 0 \implies \rho(T) = \emptyset$
- b) $\lim_{x \to +\infty} f(x) = C > 0$ and $f(x) \ge C \implies \text{constant } \|(T-z)^{-1}\| \text{ on } \Omega \subset \rho(T)$
 - Shargorodsky example: A = diag(2, 3, 4, ...) and f(x) = 1 + 1/x
- c) $f(x) = |x|^{\beta}, \ \beta \in (0,1) \implies ||(T re^{i\phi})^{-1}|| = \mathcal{O}(r^{-2\beta/(\beta+1)}) \text{ if } \phi \notin \{0,\pi\}.$
 - decay $\implies \|(T-z)^{-1}\|$ is not constant on any open set
 - decay not sufficient to generate a C_0 semigroup

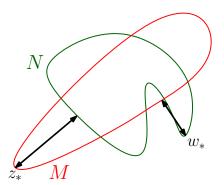
$$T := \begin{pmatrix} 0 & f(A) \\ A & 0 \end{pmatrix}$$
 in $\mathcal{H} \oplus \mathcal{H}$

- $A = A^* > 0$ in \mathcal{H} with discrete spectrum, $f : \mathbb{R} \to \mathbb{R}$ continuous
- for $A = \Delta$ in $L^2(\mathbb{R}^d)$ and f(x) = 1: T is the generator of wave equation
- a) $\lim_{x \to +\infty} f(x) = 0 \implies \rho(T) = \emptyset$
- b) $\lim_{x \to +\infty} f(x) = C > 0$ and $f(x) \ge C \implies \text{constant } \|(T-z)^{-1}\| \text{ on } \Omega \subset \rho(T)$
 - Shargorodsky example: A = diag(2, 3, 4, ...) and f(x) = 1 + 1/x
- c) $f(x) = |x|^{\beta}, \ \beta \in (0,1) \implies \|(T re^{i\phi})^{-1}\| = \mathcal{O}(r^{-2\beta/(\beta+1)}) \text{ if } \phi \notin \{0,\pi\}.$
 - decay $\implies \|(T-z)^{-1}\|$ is not constant on any open set
 - decay not sufficient to generate a C_0 semigroup

Hausdorff distance

• $M, N \subset \mathbb{C}$ non-empty and compact

$$d_{\mathbf{H}}(M,N) = \max \Big\{ \max_{z \in M} \mathrm{dist}(z,N), \max_{w \in N} \mathrm{dist}(w,M) \Big\}$$



Let

- \mathcal{H} and \mathcal{H}_n , $n \in \mathbb{N}$, subspaces of a Hilbert space \mathcal{H}_0
- $A \in \mathcal{C}(\mathcal{H}), A_n \in \mathcal{C}(\mathcal{H}_n)$ densely defined
- $K \subset \mathbb{C}$ compact and $\varepsilon > 0$

Ιf

(a) $\exists \lambda_0 \in \cap_{n \in \mathbb{N}} \rho(A_n) \cap \rho(A)$:

$$||(A_n - \lambda_0)^{-1} P_{\mathcal{H}_n} - (A - \lambda_0)^{-1} P_{\mathcal{H}}|| \to 0$$

- (b) $\lambda \mapsto \|(A \lambda)^{-1}\|$ is non-constant on any open subset of $\rho(A)$
- (c) $\overline{\sigma_{\varepsilon}(A) \cap K} = \overline{\sigma_{\varepsilon}(A)} \cap K \neq \emptyset$

then

$$d_{\mathrm{H}}\left(\overline{\sigma_{\varepsilon}(A_n)}\cap K, \overline{\sigma_{\varepsilon}(A)}\cap K\right) \to 0, \quad n \to \infty$$

- previous result by Hansen (PhD thesis, 2008), problems on ∂K
- ullet assumption on K can be avoided by using a different distance (suitable for unbounded sets)
- assumption (b) cannot be omitted

Let

- \mathcal{H} and \mathcal{H}_n , $n \in \mathbb{N}$, subspaces of a Hilbert space \mathcal{H}_0
- $A \in \mathcal{C}(\mathcal{H}), A_n \in \mathcal{C}(\mathcal{H}_n)$ densely defined
- $K \subset \mathbb{C}$ compact and $\varepsilon > 0$

 $\quad \text{If} \quad$

(a) $\exists \lambda_0 \in \cap_{n \in \mathbb{N}} \rho(A_n) \cap \rho(A)$:

$$\|(A_n - \lambda_0)^{-1} P_{\mathcal{H}_n} - (A - \lambda_0)^{-1} P_{\mathcal{H}}\| \to 0$$

(b) $\lambda \mapsto \|(A - \lambda)^{-1}\|$ is non-constant on any open subset of $\rho(A)$

(c)
$$\overline{\sigma_{\varepsilon}(A) \cap K} = \overline{\sigma_{\varepsilon}(A)} \cap K \neq \emptyset$$

then

$$d_{\mathrm{H}}\left(\overline{\sigma_{\varepsilon}(A_n)}\cap K, \overline{\sigma_{\varepsilon}(A)}\cap K\right)\to 0, \quad n\to\infty$$

- previous result by Hansen (PhD thesis, 2008), problems on ∂K
- ullet assumption on K can be avoided by using a different distance (suitable for unbounded sets)
- assumption (b) cannot be omitted

Let

- \mathcal{H} and \mathcal{H}_n , $n \in \mathbb{N}$, subspaces of a Hilbert space \mathcal{H}_0
- $A \in \mathcal{C}(\mathcal{H}), A_n \in \mathcal{C}(\mathcal{H}_n)$ densely defined
- $K \subset \mathbb{C}$ compact and $\varepsilon > 0$

 $\quad \text{If} \quad$

(a) $\exists \lambda_0 \in \cap_{n \in \mathbb{N}} \rho(A_n) \cap \rho(A)$:

$$\|(A_n - \lambda_0)^{-1} P_{\mathcal{H}_n} - (A - \lambda_0)^{-1} P_{\mathcal{H}}\| \to 0$$

(b) $\lambda \mapsto \|(A - \lambda)^{-1}\|$ is non-constant on any open subset of $\rho(A)$

(c)
$$\overline{\sigma_{\varepsilon}(A) \cap K} = \overline{\sigma_{\varepsilon}(A)} \cap K \neq \emptyset$$

then

$$d_{\mathrm{H}}\left(\overline{\sigma_{\varepsilon}(A_n)}\cap K, \overline{\sigma_{\varepsilon}(A)}\cap K\right) \to 0, \quad n \to \infty.$$

- previous result by Hansen (PhD thesis, 2008), problems on ∂K
- \bullet assumption on K can be avoided by using a different distance (suitable for unbounded sets)
- assumption (b) cannot be omitted

Let

- \mathcal{H} and \mathcal{H}_n , $n \in \mathbb{N}$, subspaces of a Hilbert space \mathcal{H}_0
- $A \in \mathcal{C}(\mathcal{H}), A_n \in \mathcal{C}(\mathcal{H}_n)$ densely defined
- $K \subset \mathbb{C}$ compact and $\varepsilon > 0$

If

(a) $\exists \lambda_0 \in \cap_{n \in \mathbb{N}} \rho(A_n) \cap \rho(A)$:

$$\|(A_n - \lambda_0)^{-1} P_{\mathcal{H}_n} - (A - \lambda_0)^{-1} P_{\mathcal{H}}\| \to 0$$

(b) $\lambda \mapsto \|(A - \lambda)^{-1}\|$ is non-constant on any open subset of $\rho(A)$

(c)
$$\overline{\sigma_{\varepsilon}(A) \cap K} = \overline{\sigma_{\varepsilon}(A)} \cap K \neq \emptyset$$

then

$$d_{\mathrm{H}}\left(\overline{\sigma_{\varepsilon}(A_n)}\cap K, \overline{\sigma_{\varepsilon}(A)}\cap K\right)\to 0, \quad n\to\infty$$

- previous result by Hansen (PhD thesis, 2008), problems on ∂K
- assumption on K can be avoided by using a different distance (suitable for unbounded sets)
- assumption (b) cannot be omitted

Domain truncation for Schrödinger operators

Operator

$$T = -\Delta + Q$$
 in $L^2(\mathbb{R}^d)$

ullet Q is complex valued and such that T has compact resolvent

Approximations

$$T_n = -\Delta + Q$$
 in $L^2(\Omega_n)$

• $\{\Omega_n\}_n$ are expanding bounded Lipschitz domains that exhaust \mathbb{R}^d ; e.g.

$$\Omega_n = B_n(0), \quad n \in \mathbb{N}$$

• Dirichlet, Neumann or Robin BC are imposed on $\partial \Omega_n$

Questions

- Does $\sigma_{\varepsilon}(T_n)$ converge to $\sigma_{\varepsilon}(T)$?
- Does $\sigma(T_n)$ converge to $\sigma(T)$? In what sense?

Domain truncation for Schrödinger operators

Operator

$$T = -\Delta + Q$$
 in $L^2(\mathbb{R}^d)$

• Q is complex valued and such that T has compact resolvent

Approximations

$$T_n = -\Delta + Q$$
 in $L^2(\Omega_n)$

• $\{\Omega_n\}_n$ are expanding bounded Lipschitz domains that exhaust \mathbb{R}^d ; e.g.

$$\Omega_n = B_n(0), \quad n \in \mathbb{N}$$

• Dirichlet, Neumann or Robin BC are imposed on $\partial\Omega_n$

Questions

- Does $\sigma_{\varepsilon}(T_n)$ converge to $\sigma_{\varepsilon}(T)$?
- Does $\sigma(T_n)$ converge to $\sigma(T)$? In what sense?

Domain truncation for Schrödinger operators

Operator

$$T = -\Delta + Q$$
 in $L^2(\mathbb{R}^d)$

 \bullet Q is complex valued and such that T has compact resolvent

Approximations

$$T_n = -\Delta + Q$$
 in $L^2(\Omega_n)$

• $\{\Omega_n\}_n$ are expanding bounded Lipschitz domains that exhaust \mathbb{R}^d ; e.g.

$$\Omega_n = B_n(0), \quad n \in \mathbb{N}$$

• Dirichlet, Neumann or Robin BC are imposed on $\partial\Omega_n$

Questions

- Does $\sigma_{\varepsilon}(T_n)$ converge to $\sigma_{\varepsilon}(T)$?
- Does $\sigma(T_n)$ converge to $\sigma(T)$? In what sense?

Example domain truncation

Rotated oscillator

• operator:

$$A := -\partial_x^2 + ix^2 \text{ in } L^2(\mathbb{R})$$

• spectrum:

$$\sigma(A) = \left\{ e^{i\pi/4} (2k+1) : k = 0, 1, 2, \dots \right\}$$

Domain truncation

sequence of operators:

$$A_n := -\partial_x^2 + ix^2$$
 in $L^2((-n, n)) + Dirichlet BC$ at $\pm n$

• $\Omega_n = (-n, n)$

Rotated oscillator

• operator:

$$A := -\partial_x^2 + ix^2 \text{ in } L^2(\mathbb{R})$$

• spectrum:

$$\sigma(A) = \left\{ e^{\mathrm{i}\pi/4} (2k+1) : k = 0, 1, 2, \dots \right\}$$

Domain truncation

• sequence of operators:

$$A_n := -\partial_x^2 + \mathrm{i} x^2 \text{ in } L^2((-n,n)) \ + \ \mathrm{Dirichlet \ BC \ at} \ \pm n$$

•
$$\Omega_n = (-n, n)$$

m-sectorial case

- 1D example: $Q(x) = (1+i)x^2 + i\delta(x)$
- decomposition: $Q = Q_0 + W$
 - ${\color{blue}\bullet}$ sectoriality: $L^1_{\rm loc}(\mathbb{R}^d)\ni Q_0$ has values in a sector with semi-angle $<\pi/2$
 - 2 growth at ∞ : $|Q_0(x)| \to \infty$ as $|x| \to \infty$
 - **8** W: possibly singular, but $-\Delta$ -form bounded with bound < 1
- the operator T introduced via closed sectorial forms

non-m-sectorial case

- 1D example: $Q(x) = ix^3 x^2 + ix^{-1/4}$
- decomposition: $Q = Q_0 U + W$, $\operatorname{Re} Q_0 \ge 0$, $U \ge 0$, $U \operatorname{Re} Q_0 = 0$
 - \bullet regularity: $Q_0 \in W^{1,\infty}_{loc}(\mathbb{R}^d), U \in L^{\infty}_{loc}(\mathbb{R}^d)$ and

$$|\nabla Q_0|^2 \le a + b|Q_0|^2$$
, $U^2 \le a_U + b_U |\text{Im } Q_0|^2$ with $b_U < 1$

- $oldsymbol{0}$ growth at ∞ : $|Q_0(x)| \to \infty$ as $|x| \to \infty$
- 8 W: possibly singular, but $-\Delta$ -bounded with bound < 1
- operator T introduced via Kato's Thm. (m-accretive Schrödinger operators 11)

¹¹D. E. Edmunds and W. D. Evans. Spectral Theory and Differential Operators. Oxford University Press, 1987.

m-sectorial case

- 1D example: $Q(x) = (1 + i)x^2 + i\delta(x)$
- decomposition: $Q = Q_0 + W$
 - ullet sectoriality: $L^1_{\mathrm{loc}}(\mathbb{R}^d) \ni Q_0$ has values in a sector with semi-angle $<\pi/2$
 - 2 growth at ∞ : $|Q_0(x)| \to \infty$ as $|x| \to \infty$
 - **8** W: possibly singular, but $-\Delta$ -form bounded with bound < 1
- the operator T introduced via closed sectorial forms

non-m-sectorial case

- 1D example: $Q(x) = ix^3 x^2 + ix^{-1/4}$
- decomposition: $Q = Q_0 U + W$, $\operatorname{Re} Q_0 \ge 0$, $U \ge 0$, $U \operatorname{Re} Q_0 = 0$
 - regularity: $Q_0 \in W^{1,\infty}_{loc}(\mathbb{R}^d), U \in L^{\infty}_{loc}(\mathbb{R}^d)$ and

$$|\nabla Q_0|^2 \le a + b|Q_0|^2$$
, $U^2 \le a_U + b_U |\text{Im } Q_0|^2$ with $b_U < 1$

- **2** growth at ∞ : $|Q_0(x)| \to \infty$ as $|x| \to \infty$
- **3** W: possibly singular, but $-\Delta$ -bounded with bound < 1
- operator T introduced via Kato's Thm. (m-accretive Schrödinger operators 11)

¹¹D. E. Edmunds and W. D. Evans. Spectral Theory and Differential Operators. Oxford University Press, 1987.

Generalized norm resolvent convergence

$$\left\| (T_n - \lambda)^{-1} \chi_{\Omega_n} - (T - \lambda)^{-1} \right\| \to 0, \quad \lambda \in \rho(T).$$

Pseudospectral convergence

$$d_{\mathrm{H}}\left(\overline{\sigma_{\varepsilon}(A_n)}\cap K, \overline{\sigma_{\varepsilon}(A)}\cap K\right)\to 0, \quad n\to\infty$$

Spectral convergence (spectral exactness)

- Every eigenvalue λ of T is approximated: there is $\{\lambda_n\}_n$, $\lambda_n \in \sigma(T_n)$, such that $\lambda_n \to \lambda$ as $n \to \infty$
- **2** Every accumulation point of $\{\lambda_n\}_n$ is an eigenvalue of T: If $\{\lambda_n\}_n$, $\lambda_n \in \sigma(T_n)$, having an accumulation point λ , then $\lambda \in \sigma(T)$

Convergence rate for eigenvalues

• $\lambda \in \sigma(T)$ simple & ϕ is the corresponding eigenfunction

$$|\lambda - \lambda_n| \le C \|\phi \upharpoonright \mathbb{R}^d \setminus B_n(0)\|.$$

Generalized norm resolvent convergence

$$\left\| (T_n - \lambda)^{-1} \chi_{\Omega_n} - (T - \lambda)^{-1} \right\| \to 0, \quad \lambda \in \rho(T).$$

Pseudospectral convergence

$$d_{\mathrm{H}}\left(\overline{\sigma_{\varepsilon}(A_n)}\cap K, \overline{\sigma_{\varepsilon}(A)}\cap K\right)\to 0, \quad n\to\infty.$$

Spectral convergence (spectral exactness)

- Every eigenvalue λ of T is approximated: there is $\{\lambda_n\}_n$, $\lambda_n \in \sigma(T_n)$, such that $\lambda_n \to \lambda$ as $n \to \infty$
- **2** Every accumulation point of $\{\lambda_n\}_n$ is an eigenvalue of T: If $\{\lambda_n\}_n$, $\lambda_n \in \sigma(T_n)$, having an accumulation point λ , then $\lambda \in \sigma(T)$

Convergence rate for eigenvalues

• $\lambda \in \sigma(T)$ simple & ϕ is the corresponding eigenfunction

$$|\lambda - \lambda_n| \le C \|\phi \upharpoonright \mathbb{R}^d \setminus B_n(0)\|$$

Generalized norm resolvent convergence

$$\left\| (T_n - \lambda)^{-1} \chi_{\Omega_n} - (T - \lambda)^{-1} \right\| \to 0, \quad \lambda \in \rho(T).$$

Pseudospectral convergence

$$d_{\mathrm{H}}\left(\overline{\sigma_{\varepsilon}(A_n)}\cap K, \overline{\sigma_{\varepsilon}(A)}\cap K\right)\to 0, \quad n\to\infty.$$

Spectral convergence (spectral exactness)

- Every eigenvalue λ of T is approximated: there is $\{\lambda_n\}_n$, $\lambda_n \in \sigma(T_n)$, such that $\lambda_n \to \lambda$ as $n \to \infty$.
- **2** Every accumulation point of $\{\lambda_n\}_n$ is an eigenvalue of T: If $\{\lambda_n\}_n$, $\lambda_n \in \sigma(T_n)$, having an accumulation point λ , then $\lambda \in \sigma(T)$.

Convergence rate for eigenvalues

• $\lambda \in \sigma(T)$ simple & ϕ is the corresponding eigenfunction

$$|\lambda - \lambda_n| \le C \|\phi \upharpoonright \mathbb{R}^d \setminus B_n(0)\|$$

Generalized norm resolvent convergence

$$\left\| (T_n - \lambda)^{-1} \chi_{\Omega_n} - (T - \lambda)^{-1} \right\| \to 0, \quad \lambda \in \rho(T).$$

Pseudospectral convergence

$$d_{\mathrm{H}}\left(\overline{\sigma_{\varepsilon}(A_n)}\cap K, \overline{\sigma_{\varepsilon}(A)}\cap K\right)\to 0, \quad n\to\infty.$$

Spectral convergence (spectral exactness)

- Every eigenvalue λ of T is approximated: there is $\{\lambda_n\}_n$, $\lambda_n \in \sigma(T_n)$, such that $\lambda_n \to \lambda$ as $n \to \infty$.
- **2** Every accumulation point of $\{\lambda_n\}_n$ is an eigenvalue of T: If $\{\lambda_n\}_n$, $\lambda_n \in \sigma(T_n)$, having an accumulation point λ , then $\lambda \in \sigma(T)$.

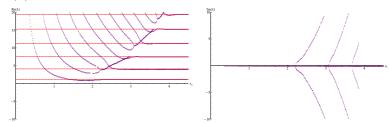
Convergence rate for eigenvalues

• $\lambda \in \sigma(T)$ simple & ϕ is the corresponding eigenfunction

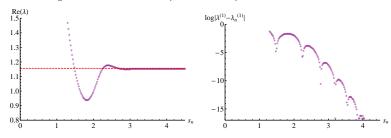
$$|\lambda - \lambda_n| \le C \|\phi \upharpoonright \mathbb{R}^d \setminus B_n(0)\|.$$

$$T = -\partial_x^2 + ix^3$$
, $Dom(T) = W^{2,2}(\mathbb{R}) \cap Dom(x^3)$

• $\sigma(T) \subset \mathbb{R}$



• the first eigenvalue and the rate (Dirichlet BC)



$$T = -\partial_x^2 + ix$$
, $Dom(T) = W^{2,2}(\mathbb{R}) \cap Dom(x)$

- σ(T) = ∅
- all eigenvalues escape to infinity

