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The general Ising model

Classical model of equilibrium statistical mechanics proposed by Ising in 1925.

It can be thought of as a model of a magnet.
Consider a lattice of cells (particles, molecules,...) labelled by n = 1, 2, . . . ,N.
Suppose that each particle n has two possible configurations (spin):

σn = +1, (parallel, spin up, “+”) σn = −1, (anti-parallel, spin down, “-”)

The vector of all N spins is a configuration of the system:

σ = (σ1, . . . , σN).

The energy of the system is made up by two parts:

E(σ) = E0(σ) + E1(σ)

where E0 . . . “intermolecular forces”; E1 . . . “spin–external field interaction”.
In the Ising model we set:

E0(σ) = −
∑
i,j

Ji,jσiσj and E1(σ) = −
∑

i

Hiσi

where Ji,j stands for spin interaction intensity and Hi the component of external magnetic field
in the direction of preferred axis at the i-th site.
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Simplifications

1. Dimensionality of the lattice:

1-dimension: most solvable models - treated here [Ising25, Glauber65].

2-dimension: very few are solvable (H = 0), [Onsager44],
on the other hand, they are physically very interesting since there are polymers
with crystals which have strong horizontal and weak vertical interactions
(K2NiF4, Rb2MnF4), phase transitions, spontaneous magnetization,....

Higher dimensions: Monte-Carlo simulations, conformal bootstrap method,....

2. Nearest-neighbour interaction:
In most physical systems the intermolecular forces are effectively short ranged.

For instance, in inert gases they decay as ∼ r−7.

Thus, most models assume particles interact with their nearest neighbours only.

3. Constant interaction strength and external fields:
Ji,j = J, Hi = H.

Thus, the Hamiltonian is often of the form

E(σ) = −J
∑
i,j

σiσj − H
∑

i

σi

where indices of the first sum ranges “trough nearest-neighbors” only.
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Time evolution of many-spin system

From now we assume one-dimensional model with no external field (H = 0).

In addition, we assume the particles are arranged in regularly spaced linear array.

The system is assumed to be under influence of “external agency” (heat reservoir) causing
spins of particles to flip between values ±1 randomly (in time).

Denote by p(σ; t) the probability that the system is in configuration σ at time t .

2N stochastic functions p(σ; t) are unknown.

However, for the model, it is assumed we know the rate of probability transitions (probability of
change of configuration per unit time).

We may, for example, introduce a tendency for a particular spin σn to correlate with its
neighboring spins by assuming the rate depends appropriately on the momentary spin values
of the other particles.
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Master equation

General form:

d
dt

P(C; t) =
∑
C′

(
wC′→CP(C′; t)− wC→C′P(C; t)

)

Specialization to our case:
Let wn(σ) be the probability per unit time that the nth spin flips from the value σn to −σn,
while the others remain fixed.

The master equation reads:

d
dt

p(σ; t) =
∑

n
wn(σ1, . . . ,−σn, . . . , σN)p(σ1, . . . ,−σn, . . . , σN ; t)−

(∑
n

wn(σ)

)
p(σ; t)
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Glauber Dynamics

Transition rates wn(σ) may be chosen to depend on neighboring spins values as well as on
σn.

In addition, it can be desirable to add a tendency for each spin to align itself parallel to its
nearest neighbors.

Glauber’s choice for linear spin chain with H = 0:

wn(σ) =
α

2

[
1−

1
2
γσn (σn−1 + σn+1)

]

It takes 3 possible values:

wn(σ) =


α
2 , if σn−1 = −σn+1,
α
2 (1− γ), if σn−1 = σn = σn+1,
α
2 (1 + γ), if σn−1 = −σn = σn+1.

If γ > 0, then the parallel configurations are longer-lived (ferromagnetic case).
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Parameter γ - correspondence with the Ising model

When the Ising model has reached equilibrium at temperature T the probability of the system
being in a state σ is

1
Z

exp(−E(σ)/kT )

where Z is the (Gibbs) partition function and k stands for the Boltzmann’s constant.

Recall we have
E(σ) = −J

∑
n
σnσn+1.

Denote by pn(σ) the probability that the nth spin will take on the value σn as opposed to −σn
(other spins remain fixed). Then one has

pn(. . . ,−σn, . . . )

pn(. . . , σn, . . . )
=

exp (−(J/kT )σn(σn−1 + σn+1))

exp ((J/kT )σn(σn−1 + σn+1))
.

On the other hand, in the equilibrium, it has to hold that

wn(. . . ,−σn, . . . )pn(. . . ,−σn, . . . ) = wn(. . . , σn, . . . )pn(. . . , σn, . . . ).

With the Glauber’s choice for the rates one finds

pn(. . . ,−σn, . . . )

pn(. . . , σn, . . . )
=

wn(. . . , σn, . . . )

wn(. . . ,−σn, . . . )
=

1− 1
2γσn(σn−1 + σn+1)

1 + 1
2γσn(σn−1 + σn+1)

.

František Štampach (MAFIA) Ising model August 18-21, 2015 9 / 29



Parameter γ - correspondence with the Ising model

When the Ising model has reached equilibrium at temperature T the probability of the system
being in a state σ is

1
Z

exp(−E(σ)/kT )

where Z is the (Gibbs) partition function and k stands for the Boltzmann’s constant.

Recall we have
E(σ) = −J

∑
n
σnσn+1.

Denote by pn(σ) the probability that the nth spin will take on the value σn as opposed to −σn
(other spins remain fixed). Then one has

pn(. . . ,−σn, . . . )

pn(. . . , σn, . . . )
=

exp (−(J/kT )σn(σn−1 + σn+1))

exp ((J/kT )σn(σn−1 + σn+1))
.

On the other hand, in the equilibrium, it has to hold that

wn(. . . ,−σn, . . . )pn(. . . ,−σn, . . . ) = wn(. . . , σn, . . . )pn(. . . , σn, . . . ).

With the Glauber’s choice for the rates one finds

pn(. . . ,−σn, . . . )

pn(. . . , σn, . . . )
=

wn(. . . , σn, . . . )

wn(. . . ,−σn, . . . )
=

1− 1
2γσn(σn−1 + σn+1)

1 + 1
2γσn(σn−1 + σn+1)

.

František Štampach (MAFIA) Ising model August 18-21, 2015 9 / 29



Parameter γ - correspondence with the Ising model

When the Ising model has reached equilibrium at temperature T the probability of the system
being in a state σ is

1
Z

exp(−E(σ)/kT )

where Z is the (Gibbs) partition function and k stands for the Boltzmann’s constant.

Recall we have
E(σ) = −J

∑
n
σnσn+1.

Denote by pn(σ) the probability that the nth spin will take on the value σn as opposed to −σn
(other spins remain fixed). Then one has

pn(. . . ,−σn, . . . )

pn(. . . , σn, . . . )
=

exp (−(J/kT )σn(σn−1 + σn+1))

exp ((J/kT )σn(σn−1 + σn+1))
.

On the other hand, in the equilibrium, it has to hold that

wn(. . . ,−σn, . . . )pn(. . . ,−σn, . . . ) = wn(. . . , σn, . . . )pn(. . . , σn, . . . ).

With the Glauber’s choice for the rates one finds

pn(. . . ,−σn, . . . )

pn(. . . , σn, . . . )
=

wn(. . . , σn, . . . )

wn(. . . ,−σn, . . . )
=

1− 1
2γσn(σn−1 + σn+1)

1 + 1
2γσn(σn−1 + σn+1)

.

František Štampach (MAFIA) Ising model August 18-21, 2015 9 / 29



Parameter γ - correspondence with the Ising model

When the Ising model has reached equilibrium at temperature T the probability of the system
being in a state σ is

1
Z

exp(−E(σ)/kT )

where Z is the (Gibbs) partition function and k stands for the Boltzmann’s constant.

Recall we have
E(σ) = −J

∑
n
σnσn+1.

Denote by pn(σ) the probability that the nth spin will take on the value σn as opposed to −σn
(other spins remain fixed). Then one has

pn(. . . ,−σn, . . . )

pn(. . . , σn, . . . )
=

exp (−(J/kT )σn(σn−1 + σn+1))

exp ((J/kT )σn(σn−1 + σn+1))
.

On the other hand, in the equilibrium, it has to hold that

wn(. . . ,−σn, . . . )pn(. . . ,−σn, . . . ) = wn(. . . , σn, . . . )pn(. . . , σn, . . . ).

With the Glauber’s choice for the rates one finds

pn(. . . ,−σn, . . . )

pn(. . . , σn, . . . )
=

wn(. . . , σn, . . . )

wn(. . . ,−σn, . . . )
=

1− 1
2γσn(σn−1 + σn+1)

1 + 1
2γσn(σn−1 + σn+1)

.

František Štampach (MAFIA) Ising model August 18-21, 2015 9 / 29



Parameter γ - correspondence with the Ising model

When the Ising model has reached equilibrium at temperature T the probability of the system
being in a state σ is

1
Z

exp(−E(σ)/kT )

where Z is the (Gibbs) partition function and k stands for the Boltzmann’s constant.

Recall we have
E(σ) = −J

∑
n
σnσn+1.

Denote by pn(σ) the probability that the nth spin will take on the value σn as opposed to −σn
(other spins remain fixed). Then one has

pn(. . . ,−σn, . . . )

pn(. . . , σn, . . . )
=

exp (−(J/kT )σn(σn−1 + σn+1))

exp ((J/kT )σn(σn−1 + σn+1))
.

On the other hand, in the equilibrium, it has to hold that

wn(. . . ,−σn, . . . )pn(. . . ,−σn, . . . ) = wn(. . . , σn, . . . )pn(. . . , σn, . . . ).

With the Glauber’s choice for the rates one finds

pn(. . . ,−σn, . . . )

pn(. . . , σn, . . . )
=

wn(. . . , σn, . . . )

wn(. . . ,−σn, . . . )
=

1− 1
2γσn(σn−1 + σn+1)

1 + 1
2γσn(σn−1 + σn+1)

.

František Štampach (MAFIA) Ising model August 18-21, 2015 9 / 29



Expression for the parameter γ

Equating the two expressions for the ratio pn(. . . ,−σn, . . . )/pn(. . . , σn, . . . ) one gets the
formula

γ = tanh (2J/kT )
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Quantities of interest 1/2

Functions p(σ; t) which are solutions of the master equation

d
dt

p(σ; t) =
∑

n
wn(σ1, . . . ,−σn, . . . , σN)p(σ1, . . . ,−σn, . . . , σN ; t)−

(∑
n

wn(σ)

)
p(σ; t)

contain the most complete description of the system available.

Nevertheless, it is usually not possible to find them explicitly.
However, it is not necessary, since they contain vastly more information than we usually
require in practice.
To answer the most familiar physical questions about the system it suffices to know two
macroscopic variables.
Expectation value of the spins (magnetization):

qn(t) := 〈σn(t)〉 =
∑
σ

σnp(. . . , σn, . . . ; t).

Spin correlations:

rn,k (t) := 〈σn(t)σk (t)〉 =
∑
σ

σnσk p(. . . , σn, . . . , σk , . . . ; t).

Note that rn,n(t) = 1.
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Quantities of interest 2/2

Alternatively, quantities of interest are probabilities that individual spins or pairs of spins
occupy specified states.

pn(σn; t) =
∑

σ; σn fixed

p(σ1, . . . , σN ; t),

pn,k (σn, σk ; t) =
∑

σ; σn,σk fixed

p(σ1, . . . , σN ; t).

It can be shown that these probabilities can be expressed in terms of magnetization and spin
correlation:

pn(σn; t) =
1
2
(1 + σnqn(t)) ,

pn,k (σn, σk ; t) =
1
4

(
1 + σnqn(t) + σk qk (t) + σnσk rn,k (t)

)
.
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Evolution equation for magnetization

Recall the master equation:

d
dt

p(σ; t) =
∑

n
wn(σ1, . . . ,−σn, . . . , σN)p(σ1, . . . ,−σn, . . . , σN ; t)−

∑
n

wn(σ)p(σ; t)

Multiply both sides by σk and sum over all values of σ:

d
dt

qk (t) = −2
∑
σ

σk wk (σ1, . . . , σk , . . . , σN)p(σ1, . . . , σk , . . . , σN ; t) = −2〈σk wk (σ)〉

Substitute the Glauber’s expression for the rate wk :

1
α

d
dt

qk (t) = −qk (t) +
1
2
γ (qk−1(t) + qk (t))
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Matrix form of the equation for the time evolution of the magnetization (α = 1):

q̇(t) = −M q(t)

where

M =


1 −γ/2 0 . . . 0
−γ/2 1 −γ/2 . . . 0

0 −γ/2 1 . . . 0
...

...
...

...
0 0 0 . . . 1

 , q(t) =


q1(t)
q2(t)
q3(t)

...
qN(t)



The solution reads:
q(t) = exp(−tM)q(0)

Matrix M is hermitian (Jacobi) operator with simple spectrum, hence

M =
∑

n
λn〈Vn, ·〉Vn

where λ1, . . . , λN are eigenvalues of M and V1, . . . ,VN are corresponding eigenvectors.

We arrive at the solution

q(t) =
∑

n
e−tλn 〈Vn, q(0)〉Vn.
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Chebyshev polynomials

Recall Chebyshev polynomials of the second kind are defined as

Un(cosφ) =
sin ((n + 1)φ)

sinφ
, n = 0, 1, 2, . . .

Un satisfies a system of second order difference equations:

Un−1(x)− 2xUn(x) + Un+1(x) = 0, U0(x) = 1, U1(x) = 2x .

Un(x) is a polynomial of degree n with zeros

x (n)
k = cos

(
kπ

n + 1

)
, k = 1, . . . , n.

From this one easily deduces that MVn = λnVn (with (Vn)1 = 1) iff

λn =
1
γ

(
1− cos

(
nπ

N + 1

))
and Vn = (U0(λn),U1(λn), . . . ,UN−1(λn))

T

for n = 1, . . . ,N.

These formulas yield a precise expression for the time evolution of the magnetization
vector q(t).
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Approximation for N � 1 - an infinite chain

Since the number of particles N of the system is usually assumed to be large, one can
consider an approximation of the model with N →∞ - an infinite chain.

It is convenient, in this case, to alter slightly the scheme of numbering the spins by labeling a
particular spin as zeroth and designating those to one side with positive integers and those to
the other side with negative integers.

In this scheme, we may take as the equation of motion for magnetization q(t) in the same
form as before

q̇(t) = −M q(t).

However, now M is corresponding (infinite) Jacobi matrix acting on `2(Z):

M =


. . .

. . .
. . .

−γ/2 1 −γ/2
−γ/2 1 −γ/2

. . .
. . .

. . .

 .

The solution reads
q(t) = exp(−tM)q(0) =

∫
R

e−tλdEM(λ)q(0)

where EM is the spectral projection of self-adjoint operator M.

Thus, the spectral analysis of M is essential.
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Diagonalization of discrete Laplacian

Consider T operator acting on `2(Z) as

(Tψ)n = −ψn−1 + 2ψn − ψn+1, n ∈ Z.

T is bounded self-adjoint operator which is explicitly diagonalizable.

Fourier transform:

U : `2(Z)→ L2
(
(0, 2π],

dϕ
2π

)
: ψ 7→ (Uψ)(ϕ) =

∑
n∈Z

ψneinϕ

The inverse is clearly

(U−1f )n =

∫ 2π

0
e−inϕf (ϕ)

dϕ
2π

.

It is a matter of straightforward computation to verify(
UTU−1f

)
(ϕ) = 2 (1− cos(ϕ)) f (ϕ).
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The spectral measure of T

Let ψ, χ ∈ `2(Z) and f ∈ C([0, 4]) are arbitrary. Denote

dµψ,χ(λ) = d〈ψ,ET (λ)χ〉.

Then ∫ 4

0
f (λ)dµψ,χ(λ) = 〈ψ, f (T )χ〉`2 = 〈Uψ, (Uf (T )U−1)︸ ︷︷ ︸

=f (2(1−cosϕ))

Uχ〉L2

=

∫ 2π

0
Uψ(ϕ)Uχ(ϕ)f (2(1− cosϕ))

dϕ
2π

=

∫ π

0
+

∫ 2π

π
. . . subst. x = 2(1− cosϕ)

∫ 4

0
f (λ)dµψ,χ(λ) =

1
2π

∫ 4

0
f (x)

[
(Uψ)

(
arccos

(
2− x

2

))
(Uχ)

(
arccos

(
2− x

2

))
+(Uψ)

(
2π − arccos

(
2− x

2

))
(Uχ)

(
2π − arccos

(
2− x

2

))]
dx√

4x − x2
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Matrix elements of the spectral measure of T

Put ψ = em, χ = en then we get

dµm,n(x)
dx

=
1

π
√

4x − x2
cos

[
(n −m) arccos

(
2− x

2

)]
︸ ︷︷ ︸

=T|n−m|
(

2−x
2

)
on [0, 4].

Recall q(t) = exp(−tM)q(0) and we have the relation

M =
γ

2

(
T − 2

(
1−

1
γ

)
I
)

Thus,

qn(t) =
∑

m
〈en, exp(−tM)em〉qm(0) =

∑
m

∫ 4

0
exp

(
−
γt
2

(
λ− 2(1− γ−1)

))
dµm,n(λ)

Substitute x = (2− λ)/2, then

qn(t) =
1
π

∑
m

qm(0)e−t
∫ 1

−1
eγtx T|n−m|(x)

dx√
1− x2
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))
dµm,n(λ)

Substitute x = (2− λ)/2, then

qn(t) =
1
π

∑
m

qm(0)e−t
∫ 1

−1
eγtx T|n−m|(x)

dx√
1− x2

František Štampach (MAFIA) Ising model August 18-21, 2015 20 / 29



Matrix elements of the spectral measure of T

Put ψ = em, χ = en then we get

dµm,n(x)
dx

=
1

π
√

4x − x2
cos

[
(n −m) arccos
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2− x

2
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Chebyshev expansion of the exponential and final formula

∀x ∈ [−1, 1] and ∀z ∈ C it holds [A&S 9.6.34]

ezx = I0(z)T0(x) + 2
∑
n≥1

In(z)Tn(x).

where In stands for the modified Bessel function of the first kind: In(z) = i−nJn(iz).

From this and orthogonality of {Tn(x)} one deduces∫ 1

−1
ezx Tn(x)

dx√
1− x2

= πIn(z), n = 0, 1, 2, . . . .

Hence, we arrived at the final formula for time evolution of the magnetization vector:

qn(t) =
∑

m
qm(0)e−t I|n−m|(γt)
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Remark 1 - induced transient polarization

Assume the case in which all of the spin expectations qn(0) vanish except for the one:

qn(0) = δn,0.

Then we have a simple formula

qn(t) = e−t I|n|(γt).

Known properties of modified Bessel function then yields:
1 First functions qn rise as

qn(t) ∼
1
|n|!

(
γt
2

)|n|
e−t , t �

|n|
γ
.

2 They then reach a maximum at time

t ∼
|n|√

1− γ2
.

3 Finally, for much larger times, they decrease as

qn(t) ∼
1√

2πγt
e−(1−γ)t .
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Remark 2 - absence of permanent magnetization

If we put x = 1 in the previously mentioned identity we find

ez = I0(z) + 2
∑
n≥1

In(z),

for Tn(1) = 1.

Using this formula and assuming some convergence conditions one deduces∑
n

qn(t) = e−(1−γ)t
∑

n
qn(0).

A similar phenomena can be shown in the case of finite chain (N <∞). It tells us that the
total magnetization always decreases exponentially.

This result corresponds to the known absence of permanent magnetization in the linear Ising
model.

František Štampach (MAFIA) Ising model August 18-21, 2015 23 / 29



Remark 2 - absence of permanent magnetization

If we put x = 1 in the previously mentioned identity we find

ez = I0(z) + 2
∑
n≥1

In(z),

for Tn(1) = 1.

Using this formula and assuming some convergence conditions one deduces∑
n

qn(t) = e−(1−γ)t
∑

n
qn(0).

A similar phenomena can be shown in the case of finite chain (N <∞). It tells us that the
total magnetization always decreases exponentially.

This result corresponds to the known absence of permanent magnetization in the linear Ising
model.

František Štampach (MAFIA) Ising model August 18-21, 2015 23 / 29



Remark 2 - absence of permanent magnetization

If we put x = 1 in the previously mentioned identity we find

ez = I0(z) + 2
∑
n≥1

In(z),

for Tn(1) = 1.

Using this formula and assuming some convergence conditions one deduces∑
n

qn(t) = e−(1−γ)t
∑

n
qn(0).

A similar phenomena can be shown in the case of finite chain (N <∞). It tells us that the
total magnetization always decreases exponentially.

This result corresponds to the known absence of permanent magnetization in the linear Ising
model.

František Štampach (MAFIA) Ising model August 18-21, 2015 23 / 29



Remark 2 - absence of permanent magnetization

If we put x = 1 in the previously mentioned identity we find

ez = I0(z) + 2
∑
n≥1

In(z),

for Tn(1) = 1.

Using this formula and assuming some convergence conditions one deduces∑
n

qn(t) = e−(1−γ)t
∑

n
qn(0).

A similar phenomena can be shown in the case of finite chain (N <∞). It tells us that the
total magnetization always decreases exponentially.

This result corresponds to the known absence of permanent magnetization in the linear Ising
model.

František Štampach (MAFIA) Ising model August 18-21, 2015 23 / 29



Contents

1 The general Ising model

2 Time evolution of many-spin systems

3 Time evolution of magnetization

4 Time evolution of spin correlations

5 Generalizations

František Štampach (MAFIA) Ising model August 18-21, 2015 24 / 29



Solution for the spin correlations

Similarly as in the case of magnetization, one can multiply the master equation by the product
σjσk (j 6= k ) and sum over the σ variables.

Taking into account the Glauber expression for wn, the resulting equation reads

d
dt

rj,k (t) = −2rj,k (t) +
1
2
γ
(
rj,k−1(t) + rj,k+1(t) + rj−1,k (t) + rj+1,k (t)

)
, k 6= j.

For j = k we have the identity rk,k (t) = 1.

The derivation of the general solution is not so straightforward as before. Nevertheless, it can
be derived in terms of modified Bessel functions again:

rj,k (t) = ηj−k + e−2t
∑
n>m

[
rn,m(0)− ηn−m] (Ij−n(γt)Ik−m(γt)− Ij−m(γt)Ik−n(γt)

)
,

for j ≥ k , where
η = tanh (J/kT )

is the so called short-range order parameter of the Ising model.
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Generalizations - spin systems in a magnetic field

The Ising model in a magnetic field (H 6= 0) is described via Hamiltonian

−J
∑

m
σmσm+1 − H

∑
n
σn.

Glauber introduced the formula for the transition rates

wn(σ) =
1
2

(
1− βσn +

1
2
γ(β − σn)(σn−1 + σn+1)

)
.

The new parameter β correspond to the magnetic field β = tanh (H/kT )

The evolution equation for magnetization is more complicated since it is an inhomogenous
system combining functions qn with pair-correlations rn−1,n and rn,n+1.

Nevertheless, the general solution for magnetization has been found even in the case of time
dependent magnetic field H = H(t),

qn(t) = e−t
∑

k

qk (0)In−k (γt) +
1

kT
1− η2

1 + η2

∫ t

0
e−(1−γ)(t−s)H(s)ds.
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Generalization - multi-temperature Ising models

It is possible to think of a model with a spin chain whose every particle is associated with its
own heat reservoir of temperature Tn.

This model is described by the same way as before. Only the factor γ from the Glauber’s
expression for rates depends on the index:

γn = tanh (2J/kTn) .

Some attention has been paid to two-temperature kinetic Ising models, see [Racz, Zia 94],
[Mobilia, Schmittmann, Zia 05], [Mazilu, Williams 09], and others.

The two-temperature model represent the simplest generalization beyond the completely
uniform system. However, there are other possibilities for modifications which are interesting
and perhaps physically relevant, e.g.,

Tn ∼
α

n
.
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