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Abstract

A brief survey of the theory of orthogonal polynomials is given
including the fundamental recurrence relation and Favard’s
theorem, the Hamburger moment problem and its solution in terms
of the Nevanlinna parametrization of probability measures in the
indeterminate case, a relationship to the self-adjoint extensions of
the associated Jacobi matrix and properties of the zeros of an
orthogonal polynomial sequence, and the Gauss quadrature.

Furthermore, selected new results concerning a generalization of
the Lommel polynomials are presented; a complete description
can be found in the recent publication:

e F. Stampach, P. Stovigek: Orthogonal polynomials associated
with Coulomb wave functions,

J. Math. Anal. Appl. 419 (2014) 231-254

available online,

http.//dx.doi.org/10.1016/j.jmaa.2014.04.049
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Introduction

The roots of the theory of orthogonal polynomials go back as far
as to the end of the 18th century. The field of orthogonal
polynomials was developed into considerable depths in the late
19th century from a study of continued fractions by

P. L. Chebyshev and was further pursued by A. A. Markov and
T. J. Stieltjes.

Some of the mathematicians who have worked on orthogonal
polynomials include Gabor Szegd, Naum Akhiezer, Arthur Erdélyi,
Wolfgang Hahn, Theodore Seio Chihara, Mourad Ismail, Waleed
Al-Salam, and Richard Askey.

The theory of orthogonal polynomials is connected with many
other branches of mathematics. Among others one can mention
continued fractions, operator theory (Jacobi operators), moment
problems, approximation theory and quadrature, stochastic
processes (birth and death processes) and special functions.
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Classical orthogonal polynomials
A scheme of classical orthogonal polynomials

@ the Hermite polynomials

@ the Laguerre polynomials, the generalized (associated)
Laguerre polynomials

@ the Jacobi polynomials, their special cases:
o the Gegenbauer polynomials, particularly:

@ the Chebyshev polynomials
@ the Legendre polynomials

The interval of orthogonality

R for the Hermite polynomials
I =4 (0,+00) forthe generalized Laguerre polynomials

(—=1,1) for the Jacobi (and Gegenbauer, . ..) polynomials
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Some common features:

« Any classical orthogonal polynomial sequence, {P,(x); n > 0},
forms an orthogonal basis in .# = L2(/, o(x)dx),
I C Ris an open interval, o(x) > 0 is continuous on /.

« {Pp(x)}, after having been normalized to a sequence of monic
polynomials, {Pn(x)}, obeys the recurrence relation

Pni1(x) = (X = €n)Pn(X) = dnPp_1(x), n=0,
Po(x) = 1 and (conventionally) P_1(x) =0

cn, N > 0, are all real, and d,, n > 1, are all positive (¢ is arbitrary)

« The zeros of P,(x) are real and simple and belong all to /,
the zeros of P,(x) and Pp.1(x) interlace,
the union of the zeros of P(x) for all n > 0 is a dense subset in /
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Hermite polynomials

Charles Hermite: December 24, 1822 — January 14, 1901

e C. Hermite: Sur un nouveau développement en série de
fonctions, (1864)

e PL. Chebyshev: Sur le développement des fonctions a une
seule variable, (1859)

e P. Laplace: Mémoire sur les intégrales définies et leur
application aux probabilités, (1810)
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Definition (n=0,1,2,...)

e P
H,,(x):n!ez_;(n_w(Zx)

The Rodrigues formula

Hn(x) = (—1)”eX2d—n o — (2x- 3) .
me dx”n - dx
Orthogonality / Hin(X)Hi(x) €2 dX = 2701/ Sy
an orthogonal basis of .7 = [2(R, e *"dx)

Recurrence relation
Hpi1(x) = 2xHn(x) —2nHp_1(x), n>0; Hy(x) =1,H_1(x) =0

Differential equation (Hp(x) is a solution of Hermite’s DE)

y"—2xy' +2ny =0
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(Generalized) Laguerre polynomials

Edmond Laguerre: April 9, 1834 — August 14, 1886

o E. Laguerre: Sur lintégrale [>° €~ dx, (1879)

X
¢ N. Y. Sonine: Recherches sur les fonctions cylindriques et le

développement des fonctions continues en séries, (1880)

Pavel Stovigek Ortogonalni polynomy



Definition (Ln(x) = L9 (x))

L(x) = zn: (Z) (_l:!)k XKL (x) = an(—ﬂk(ﬁ i) ):.(

k=0 k=0
The Rodrigues formula
(a) o x—eX d" —X yn+a\ _ x*(d " N+«
Lo 00 = =g &) = (G 1)
Orthogonality (o« > —1)
/ L)L (x) x*e ™ dx = W Sm,n
O .

an orthogonal basis of 77 = L2((0, ), x*e~¥dx) (a > —1)
Recurrence relation

(n+ DL () = @n+a+1 =X)L ()~ (n+a) L§(x), n>0,

Ly (x) = 1 and, by convention, L'} (x) = 0
Differential equation (Ln(x) is a solution of Laguerre’s DE)

xy"+(1-x)y'+ny=0
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Jacobi (hypergeometric) polynomials

Carl Gustav Jacob Jacobi: December 10, 1804 — February 18, 1851

e C.G.J. Jacobi: Untersuchungen (ber die Differentialgleichung
der hypergeometrischen Reihe, J. Reine Angew. Math. 56 (1859)
149-165
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plad) . atnt) n(”)r(a+ﬂ+n+m+1)(z—1>’”
n (Z)_n!r(a+5+n+1) m Mo+ m+1) 2

m=0

The Rodrigues formula

PY)(z) = (2_,,1n)!n (1-2)"°(1+2)~" :zn (1=2)°(1 +2)°(1 = 2)"|

Orthogonality (o, 5 > —1)
1
/ PeAX) P (x) (1 —x)*(1 +x) dx =0, m#n
-1
Recurrence relation (Pé“’ﬁ N(z) =1, P(f;’ﬂ )(z) =0)
2(n+1)(n+a+ B+ 1)(2n+a+8) P (2)
= (2n+a+B+ 1)((2n—|—a+ﬁ+2)(2n+a+6)z+a2 —52>P,(f“’5)(z)
—2(n+a)(n+ B)2n+a+ B +2) P (z)
Differential equation
(1=x®)y' +(B—a—(a+B+2)X)y +n(n+a+pB+1)y=0
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Gegenbauer (ultraspherical) polynomials

Leopold Bernhard Gegenbauer: February 2, 1849 — June 3, 1903

e L. Gegenbauer: Uber einige bestimmte Integrale,
Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften.
Mathematische-Naturwissenschaftliche Classe. Wien 70 (1875)

e L. Gegenbauer: Uber einige bestimmte Integrale, (1876)

o L. Gegenbauer: Uber die Functionen CY(x), (1877)
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Ln/2]

o MNn—-—k+ o e
Cr'(2) = ;)(1)k r(éfk!(nfzﬁ)! (22)"

a particular case of the Jacobi polynomials

Ma+1/2)[(2a + n) P(a 1/2,a— 1/2)( 2)

Fra)f(n+a+1/2)

The Rodrigues formula

(=2)"T(n+ )l (n+ 2a)
n' (o)l (2n+ 2a) (

Orthogonality (o, 8 > —1)

C(2) =

2v—ati/2 d" 2\nta—1/2
_ —« 7 _ n+aoa—
x°) O (1—x7)

Ci(z) =
/1 C,(#)(X)C'ga)(x)“ _x®)2dx =0, m+#n
Recurrenc:; relation (C((,a)(x) =1, C(f?(x) =0)
(n+1)CY, (x) = 2x(n+a)CY)(x) - (n+2a - 1)C™ (x), n>0
Differential equation (
(1 = x2)y" — (2a+1)xy’ + n(n+2a)y =0

the Gegenbauer differential equation)
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Chebyshev polynomials of the first and second kind

Transliterations: Tchebycheff, Tchebyshev, Tschebyschow

Pafnuty Lvovich Chebyshev: May 16, 1821 — December 8, 1894

e P. L. Chebyshev: Théorie des mécanismes connus sous le nom
de parallélogrammes, Mémoires des Savants étrangers présentés
a I’Académie de Saint-Pétersbourg 7 (1854) 539-586
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To(x) =1, Up(x) =1, and for n > 0,

02l
Ta(x) = g kzo (,7_1)k (n k k) (zx)n_Qk

Ln/2]
U = 3 ("o

Moreover, for all n > 0,

sin((n+1)9)

Th(cos(¥)) = cos(n¥), Up(cos(¥)) = Sn v
a particular case of the Gegenbauer polynomials

(forn>1), Un(x) = C$"(x)

o=

n A«
To(x) = 5 Ci(x)

Orthogonality (m # n)

/ Tm(x) Th(x
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The Chebyshev polynomials { T,(x)} form an orthogonal basis of
H = LZ((_1 ) 1)7 (1 - X2)71/2dX),

The Chebyshev polynomials {U,(x)} form an orthogonal basis of
A = L2((—1,1),(1 — x?)/2dx)

Recurrence relation
Thi1(X) = (2=0n,0) XTn(X)—Th-1(X), Uni1(x) = 2xUn(x)—Up_1(x)
To(x) =1, Up(x) = 1 and, by convention, T_1(x) =0, U_1(x) =0

Differential equation
The Chebyshev polynomial T,(x) is a solution of the Chebyshev
differential equation

(1-x3)y"—xy +nfy=0,

the Chebyshev polynomial U,(x) is a solution of the differential
equation
(1-x2)y" —3xy' +n(n+2)y =0
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Legendre polynomials

@ i
- 4
Adrien-Marie Legendre: September 19, 1752 — January 10, 1833

e M. Le Gendre: Recherches sur 'attraction des sphéroides
homogénes, Mémoires de Mathématiques et de Physique,
présentés a I’Académie Royale des Sciences, par divers savans,
et lus dans ses Assemblées 10 (1785) 411-435
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Definition | () = 2" i <n> <(n +k - 1)/2> ok
n k

n
k=0
a particular case of the Gegenbauer polynomials

Pa(x) = C{/2(x)
The Rodrigues formula

1 d”
Pn(x) 2

= opigxn X 1)

Orthogonality
]
/ Pm(X)Pa(x)dx =0 form#n
—1
an orthogonal basis of s# = L2((—1,1),dx)
Recurrence relation (Py(x) =1, P_1(x) =0)
(n+1)Ppi1(x) = (2n+ 1)xPp(x) — nPp_1(x), n>0

Differential equation (Legendre’s differential equation)

((1 —x2)y’>/+n(n+1)y:0
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Basic monographs

e G. Szeg6: Orthogonal Polynomials, AMS Colloquium
Publications, vol. XXIIl, 2nd ed, (AMS, Rhode Island, 1958) [first
edition 1939]

e J. A. Shohat, J. D. Tamarkin: The Problem of Moments, Math.
Surveys, no. |, 2nd ed., (AMS, New York, 1950) [first edition 1943]

o N. |. Akhiezer: The Classical Moment Problem and Some
Related Questions in Analysis, (Oliver & Boyd, Edinburgh, 1965)

e T. S. Chihara: An Introduction to Orthogonal Polynomials,
(Gordon and Breach, Science Publishers, New York, 1978)

Pavel Stovigek Ortogonalni polynomy



The moment functional

Definition

A linear functional £ on CJ[x]

(the linear space of complex polynomials in the variable x)
is called a moment functional, the number

pn=L[x", n=0,1,2,...,

is called a moment of order n.

Any sequence of moments {u,} determines unambiguously a
moment functional £.

Definition

A moment functional £ is called positive-definite,
if L[m(x)] > 0 for every polynomial 7(x) that is not identically zero
and is non-negative for all real x.
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Theorem

A moment functional £ is positive-definite if and only if its
moments pup € R

fo M4 ... fn
Pl i

An = det(,llzj+k)ﬁk:0 = | . ) n_ > 0, vn 2 0
[ fingd --- p2n

A,

A real sequence {un; n > 0} such that A, > 0,Vn > 0, is said to
be positive.

Definition

Given a positive-definite moment functional £, a sequence
{Pn(x); n> 0} is called an orthonormal polynomial sequence
with respect to £ provided for all m,ne 7.,

@ P, (x)is a polynomial of degree n
Q Q[IA:’m(x)IA:’n(x)] = 0m,n
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Quite frequently, it is convenient to work with a sequence of
orthogonal monic polynomials, which we shall denote {FPp(x)},
rather than with the orthonormal polynomial sequence {Pp(x)}.

For every positive-definite moment functional £ there exists a
unique monic orthogonal polynomial sequence { Pn(x)}.

2 Ap
E[Pa(x)?] = =", Yn>0 (A_y:=1)
An—1
hence a Ap_
Pa(x) = \/ =3 Pa(x)
n
are normalized, po M4 .- Hp
1 K1 2 Kn41
P — : :
n(X) Al : :
Hn—1  Hn
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Fundamental recurrence relation, Favard’s theorem

Let £ be a positive-definite moment functional,
let {Pn(x)} be the corresponding ON polynomial sequence.

vn e N,Vr(x) € C[x], degn(x) < n = £[P,(x)x(x)] =0
Forn=10,1,2,...,

n+1
xPp(x) =" ankPu(x),  ank = LxPa(x)Pk(x)] (ann1 #0)
k=0

For k < n—1, anx = £[Pn(x)(xPx(x))] = 0. Put

an = £[xPn(x)Ppi1 ()], Bn = LIxPn(x)?].

ap and B, are all real and ap = ap 1 # 0.
{Pn(x)} fulfills the second-order difference relation

Xibn(x) = 04,,_1/:-’,7_1(X) +5nl5n(x) + Oénibn-H (x), n>0 J

A

Po(x) =1, and we put P_1(x) =0 (a_4 plays no role)
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Rephrased: ¢, = 8n, dn = aﬁq (dp may be arbitrary)
Theorem

Let £ be a positive-definite moment functional, let { P,(x)} be the
corresponding monic OG polynomial sequence. Then there exist
real c,, n > 0, and positive d,, n > 1, such that

Pni1(x) = (X = €n)Pn(X) — dhPr—1(x), n=0,
with Py(x) = 1 and P_4(x) = 0.

Any £ can be renormalized so that £[1] =1
Theorem (Favard’s Theorem)

Let ¢c,, n>0, and d,, n> 1, be arbitrary real and positive,
respectively, let {Pn(x); n€ Z.} be defined by the formula

Pni1(x) = (x—cn)Pn(X)—dnPn_1(x), Yn > 0; P_1(x) = 0, Po(x) = 1
Then there exists a unique positive-definite £ such that

L] =1, L[Pm(x)Pa(x)]=0 form#n, mn=0,1,2,...

v
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The zeros of an orthogonal polynomial sequence

Definition

Let £ be a positive-definite moment functional and E C R.
E is called a supporting setfor £ if L[r(x)] >0

for every real polynomial 7(x) which is non-negative on E
and does not vanish identically on E.

Theorem

Let L be a positive-definite moment functional, { Pn(x); n > 0}

be the corresponding monic orthogonal polynomial sequence.
For any n, the zeros of Pn(x) are all real and simple,

the zeros of P,(x) and P,.1(x) interlace, i.e. between any two
subsequent zeros of P, 1(x) there is exactly one zero of Pu(x).
On the contrary, if 2 < m < n then between any two zeros of
Pm(x) there is at least one zero of Pp(x).

Moreover, if an interval | is a supporting set of L then
the zeros of Pp(x) are all located in the interior of |.
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The Hamburger moment problem

Let {un; n=0,1,2,...} be asequence of moments defining a
positive-definite moment functional £.
One can assume g =1, i.e. £[1]=1.

One may ask whether £ can be defined with the aid of a probability
measure do(x) on R where o(x) is a probability distribution,

+o0
Sr(x)] = / r(x)do(x), ¥r(x) € C[A]

—00

This can be reduced to

+00
/ x"do(x) =pun, n=0,1,2,... J

— 00

This problem is called the Hamburger moment problem.

The answer is always affirmative, but do(x) need not be unique.
The moment problem is determinate if there exists a unique
probability measure do(x), indeterminate in the opposite case.
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Define a sequence of polynomials { Q,(x)} by the recurrence
XQn(x) = ap—1Qn_1(X)+BnQn(X)+anQni1(x), Qo = 0, Q1 (x) = 1/

Qn(x) is called a polynomial of the second kind,
Pnr(x) is called a polynomial of the first kind.

Theorem

If for some z € C\R, Y |Py(2)]? = oo, then the Hamburger
n=0

moment problem is determinate. Conversely, this equality holds

true vz € C\ R if the Hamburger moment problem is determinate.

Theorem

| A\,

Ifforsome z € C, > (|Pa(2)P +|Qn(2)[?) < oo then the
n=0
Hamburger moment problem is indeterminate. Conversely, this

inequality is fulfilled Yz € C if the Hamburger moment problem is
indeterminate.
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The Nevanlinna parametrization

How can one describe all solutions to the moment problem in
indeterminate case?
These series define entire functions, the Nevanlinna functions:

AZ) = 23 Qu(0)Qn(2) B(z)= 1423 Qu0)Pu(2).
n=0 n=0

C(z)=1+z i P,(0)Qu(z), D(z)=z i P.(0)P,(2).
n=0 n=0

It is known that A(z)D(z) — B(z)C(z) =1

Definition
Pick functions ¢(z) are holomorphic functions on the open
complex halfplane Im z > 0, with values in Im z > 0,

extendedto C\ R by the formula ¢(z) = ¢(zZ) forImz < 0.
The set of Pick functions will be denoted by P.
P may be augmented by the constant function ¢(z) = cc.
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Theorem

The formula do(x)  A(2)¢(2) — C(2)
xz-x  B(2)ez)-D(2)’

establishes a one-to-one correspondence between functions

#(z) € PU{oo} and solutions o = o, to the moment problem.

ze C\R,

Theorem (M. Riesz)

Let o, be a solution to an indeterminate moment problem,

$(z) € PU{oc}. Then {P,(x); n=10,1,2,...} is an ON basis in
L2(R,doy) ifand only if ¢(z) =t is constant, with t € RU {oo}.

The solutions o}, t € RU {c0}, are referred to as N-extremal.

Proposition
The N-extremal solutions o}, t € R U {oo}, are all purely discrete,

the measure = » _ p(x)dx where 3; = {x € R; B(x)t—D(x) = 0}

XE3¢

p(x) == (X520 Pa(x)?) = (B()D(x) — B(Xx)D'(x))"
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The associated Jacobi matrix

Recall the recurrence for an ON polynomial sequence {P,(x)}
Xibn(x) = Qp—1 I:-,n—1(X) + 5nﬁ,n(x) + Oénibn—H(X)y n>0
Let M be an operator on C[x] acting via multiplication by x,

Mr(x) = x7(x), Vnr(x) € C[x]

The matrix of M with respectto {P,(x)} is the Jacobi matrix

Bo o
ag By

J = ay P2 ap

J represents a linear operator on the vector space of all complex

sequences. Forevery z € C,
(IADO(Z)7 IAD1 (2)7 pZ(Z)v s )

is a formal eigenvector of 7, Jf = zf

(f is unambiguous up to a scalar multiplier)

Ortogonalni polynomy
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Let 7 be the linear hull of the canonical basis in (Z);
9 is J-invariant. Denote J := 7| .

J is a symmetric operator on (2(Z.), Jmin := J , Jmax = T | Dom s
Dom Jmax = {f € (3(Z,); Jf € 13(Z,)}
Clearly, J C Jmax . Straightforwardly,
()" = (Jmin)" = Jhmax: (dmax)” = nin

Hence Jmax is closed and Jmin C Jmax -
The deficiency indices of Jni, are either (0,0) or (1,1).
The latter case — if and only if for some and hence any z € C\ R,

Y IPa(2)P < oo
n=0

An alternative terminology: 7 is /imit point if the sequence {P,(z)}
is not square summable for some and hence any z € C\ R,

J is limit circle in the opposite case.

In other words, 7 is limit point < J is essentially self-adjoint
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Theorem

Jmin IS self-adjoint iff the moment problem is determinate.
In the indeterminate case, the s.a. extensions of Jnin, are in
one-to-one correspondence with the N-extremal solutions of the
moment problem.
If J; is a s.a. extension of Jmin then the corresponding N-extremal
solution o = ot Is

ot(x) = (eo, Et((—o0, x]) €o),
E; is the spectral projection-valued measure for J;, e is the first
vector of the canonical basis, supp o; = specJ; .

v

In the indeterminate case, the resolvent of any s.a. extension of
Jmin is a Hilbert-Schmidt operator.

Suppose the moment problem is indeterminate. The spectrum of
any s.a. extension J; of Jpin is simple and discrete.

Two different s.a. extensions J; have distinct spectra.

Every x € R is an eigenvalue of exactly one s.a. extension J; .
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Continued fractions

Let {an},{bn} C C. A generalized infinite continued fraction

ai

also written as
is understood here as a sequence of convergents
An
fr=—=, Nn=1,2,3,...
n Bn )
An, B, are given by the fundamental Wallis recurrence formulas
Ani1 = bpy1An + anp1An—1, Bny1 = bpy1Bn+ @py1Bn-1,

with A_4 =1, AOZO, B_4 =0, 80:1
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Definition
Let £ be a positive-definite moment functional,
Pni1(x) = (Xx—cn)Pn(x)—dnPpr-1(x), n >0, P_1(x) =0, Py(x) =1,

be the fundamental recurrence relation.
The monic polynomial sequence {P,(,”(x)} defined by

P, () = (x = Cait) PSP (x) = dpyt P, (), N> 0,

P(_11)(x) =0, P(()”(x) = 1, is the associated polynomial sequence.

Proposition

Let{c,; n=0,1,2,...} and {d,; n=1,2,3,...} be areal and
positive, respectively, {P,} and {P,(71)} be defined as above. Then
the convergents of the continued fraction

_ 1 A |
’X—Co ‘X—C1 |X—Cg
(1)
are fn:P”‘1(X):Q”(X) n=1,2,3,...

Pa(x)  Py(x)
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Gauss quadrature

Theorem

Let L be a positive-definite moment functional,

{Pn(x)} the corresponding monic OG polynomial sequence.
Denote by xp1 < Xp2 < ... < Xpn the zeros of P,(x), n € N.
ThenVn € N there exists a unique n-tuple of numbers Ap,
1<k<n,

such that for every polynomial =(x) of degree at most2n —1,

ﬁ[ﬂ(X)] = ZAnk W(Xnk).

k=1

The numbers Ak are all positive.
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Let {P,(,”} designate the associated monic polynomial sequence.
Thenforn,k e N, k < n,

One also has

where

Pavel Stovigek Ortogonalni polynomy



The Lommel polynomials

A fundamental property of Bessel functions is the recurrence
2v
o1 (X) = =2 du(x) = dy1 (%)
This relation can be iterated [Lommel, 1871] yielding,
for necZ,,veC,—v¢Z; and x € C\ {0},

uin(X) = Rnp(X)do(X) = Rnt,u41(X)dy—1(X) ]
where [n/2] n—2k
n—k\lFv+n—-k) (2
e = 3 (") e (5)

is the so called Lommel polynomial.
Note that R, (x) is a polynomial in x~1 rather thanin x.

e E. von Lommel: Mathematische Annalen 4 (1871) 103-116
The Lommel polynomials are directly related to Bessel functions,

B (X) = 5 (Y140 (X0t (%) = S 100/(3) Yo ()
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The Lommel polynomials obey the recurrence

2(n+v)

Rn+1,u(x) = %

Rn,u(x) - an1,u(x)a ne Z+, J

with the initial conditions R_1,(x) =0, Ry, (x) = 1.
The support of the measure of orthogonality for
{Rn+1(x); n > 0} coincides with the zero set of J,(z) ;

Jk,, designates the k-th positive zero of J,(x), put j«., = —jk.»
k € N. The orthogonality relation reads

1 1
— Rny k) Rmw k) = 57— 9
ke;\:{o} ';(2,,, n,v+1 (]k, ) m, +1(]k, ) 2(n—|—1/—|— 1) m,n J

andisvalidforall v > —1and mne Z,.
Let us also recall Hurwitz’ limit formula

nILmoo r((ljp/—i-zl)’:n‘l) Rn,zl+1 (P) = Jl/(p)
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Lommel Polynomials in the variable v

Lommel polynomials can also be addressed as polynomials in the
parameter v. The measure of orthogonality is supported on the
zero set of a Bessel function regarded as a function of the order.

Let {Th(u;v)}52, be asequence of polynomials in v, depending
on a parameter u # 0,

uTh 1(u;v)—nTh(u;v)+uThi(uv) =vTh(u;v), neZy,
with T_1(u;v) =0, To(u; v) = 1. Then
Tn(u, 7/) — RnW(ZU), Vn S ZJr

Ju(x) as a function of v, with x > 0, has infinitely many simple real
zeros with no finite accumulation point.
Let 6, =0x(u), neN, be the zeros of J,_{(2u) for u >0,
The corresponding Jacobi matrix J(u; v) has the entries
Bn=—n, an=U, NEZy.
It is an unbounded self-adjoint operator with a discrete spectrum.
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The orthogonality measure for { T,(u; v)} is supported on the
spectrum of J(u; v),
the orthogonality relation has the form

> Jo(20) Rn o, (2uU)Rme, (2U) = Smn
k=1 U (62}2:91(;/2_1 (2U))

Let us remark that initially this was Dickinson who formulated, in
1958, the problem of constructing the measure of orthogonality for
the Lommel polynomials in the variable v. Ten years later, Maki
described such a construction.

¢ D. Dickinson: On certain polynomials associated with orthogonal
polynomials, Boll. Un. Mat. Ital. 13 (1958) 116-124

e D. Maki: On constructing distribution functions with application to
Lommel polynomials and Bessel functions, Trans. Amer. Math.
Soc. 130 (1968), 281-297
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Coulomb wave functions

Regular and irregular Coulomb wave functions, F;(n, p) and
Gi(n, p), are two linearly independent solutions to the ODE

d?u 2n  L(L+1)

— 1—- - — =0
d? ( p p? >U
Wronskian formula

Fr_1(n,p)GL(n, p) — FL(n,p)GL-1(n, p) =

L
VL2 + P

Fi(n, p) admits the decomposition

Fi(n,p) = Cu(n)p"ér(n, p)

where
2Le=m/2|F(L+1 + in)|

r2L +2)

Ci(n) =

and ‘
oL(n,p) :==e P 1F(L+1—in,2L +2,2ip)
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The regular Coulomb wave function generalizes the Bessel
function

F,—1/2(0,p) = 2 J(p)
. , 2\"
¢v—172(0,p) = e 1R (v +1/2,2v+1,2ip) = r(’/+1)<p> Ju(p)

Moreover, it obeys the recurrence relation

Fri1(n, p)

_ L+1 1, 0
- m«p - L(L+1)>(2L+1)FL(’7’p)
VPR p)>

L
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Orthogonal polynomials associated with F; (7, p)

Put

n? + (N + 1)2
(N+1)/(2N + 1)(2N + 3)
forneR,N>—-1/2 and N#0 if n#0.
Let {P,(,L)(n; z)}2, be the sequence of OG polynomials given by

WNn =

_ "
and Ay = NN 1) J

2PV (0 2) = Wi n POy (05 2) F AL n1 PO (15 2) + Wit POy (i Z)J

with P(_L1)(17; z)=0, PSL)(n; z)=1.
We restrict ourselves to the range of parameters
—1#L>-3/2 if neR\{0},and L> -3/2 if n=0.
The associated Jacobi matrix J; has the entries
agL) = WL—I—I’H—17 ﬂI(‘IL) - AL—i—l’H—‘h n= 07 1727 e
Let us denote L L _
RV () := PP (i p7)

forp#£0,neZ,.
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Proposition
For n € Zand p # 0 one has

RO p) = \/(L+1)2+n2\/2L+2n+3
S L+1 2L +3

X (FL(n, p)Gryns1(n, p) = Frens1(n, p)GL(n, p)).

Remark

|

The polynomials R (n p) are a generalization of the Lommel
polynomials R, (x) .

Indeed, the recurrence for {Rf,”(n;x)} reduces to the recurrence
for {Rn,(x)} ifwelet n=0and L=v—-1/2;

v lv+n+1
Rr(7 1/2)(0i P) = ﬁ Rn,u+1(ﬂ)

for neZy,pe C\ {0} and v > —1.
Similarly for other formulas to follow.
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The polynomials Rf,”(n, p) play the same role for Coulomb wave
functions as Lommel polynomials do for Bessel functions.
Proposition

R (n, p)FL(n, p)

L+1 j2L+3 P+ L2 BD. (1. pVFis(1.)
L 2L +1 7’]2—|—(L—|—1)2 n—1\" P)FL—1("N, p

/2L +2n+1
= ﬁFL—kn(n,P);

where n€Z;, 0#L>-1/2, ne€R and p #0.

Proposition

For the above indicated range of parameters, the zeros of
¢1(n,-) form a countable subset of R\ {0} with no finite
accumulation points. The zeros of ¢,(n,.) are all simple,
é1(n,-) and ¢r1(n,-) have no common zeros,

the zeros of the same sign of ¢,(n,:) and ¢;1(n,-) mutually
separate each other.
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Let us arrange the zeros of ¢,(n,-) into a sequence pg p,
neN sothat0 < [p.1] < |pLa| < lpral <.

For the above indicated range of parameters,

— 1 -0 () (L+1)2 + 77
E ’ R . R : _
pel oL ) L+3)(L+1)2 ™"

0 is not an eigenvalue of the compact operator J; .
Here is a generalization of Hurwitz’ limit formula

Proposition
For the above indicated range of parameters and p # 0,

lim \/(2L+3)(2L+ 20+ 1) Cren(n)p™" AL, (n: )

772
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