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Basic notions

o Consider a system of N particles with charges e1,...,eny > 0.
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o Consider a system of N particles with charges e1,...,eny > 0.
@ This system is described by a (permutation symmetric or antisymmetric) normalized
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e PRM), v =1,

of N variables x; € RY, d € {2,3}.
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Basic notions

o Consider a system of N particles with charges e1,...,eny > 0.

@ This system is described by a (permutation symmetric or antisymmetric) normalized

wave function
¢ e PRM), Y]z =1,

of N variables x; € RY, d € {2,3}.
@ The (permutation symmetric) probability density, Py, is given by

Pu(xas ) = [0, xw)
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Electrostatic energy and charge density

P ..
IP Z eiej N(Xla ) XN)
1<i<j<N v [xi =]

@ The expectation value of the electrostatic energy, Ip, is given by

dX1 0oo dXN
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Electrostatic energy and charge density

@ The expectation value of the electrostatic energy, Ip, is given by

P,
o = E eiej Mdh--- dxn.
RN Ixi — x|

o We define the charge density of the ith particle, p;, by

pi(x) = e;/ Prn(Xt, .oy Xim1, X, Xig1y -« -y xn)dxa ... dxi ... dxn
RA(N—1)

and the so-called single particle charge density, p, by

p(x) =D pilx).
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Electrostatic energy and charge density

@ The expectation value of the electrostatic energy, Ip, is given by

P,
o = E eiej Mdh--- dxn.
RN Ixi — x|

o We define the charge density of the ith particle, p;, by
pi(x) = e;/ Prn(X1, .oy Xie1, X, Xip1, -« o, Xn) dXa .. dx; ... dxn
RA(N—1)

and the so-called single particle charge density, p, by
N
p(x) = pi(x).
i=1

@ Note that due to the normalization condition on Py, we have

N
/d pi = e, /d p= Z ej = the total charge.
R R

i=1
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Direct and indirect part of Coulomb energy

@ One may approximate the electrostatic energy Ip by the classical electrostatic
energy, D(p, p), associated with the charge density p,

D(p,p) = %//RJX]RJ dedy-

[x =yl
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Direct and indirect part of Coulomb energy

@ One may approximate the electrostatic energy Ip by the classical electrostatic
energy, D(p, p), associated with the charge density p,

D(p,p) = %//RJX]RJ dedy-

[x =yl

@ We call this term the direct part.
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Direct and indirect part of Coulomb energy

@ One may approximate the electrostatic energy Ip by the classical electrostatic
energy, D(p, p), associated with the charge density p,

_1 p(X)p(y)
0= 3 [ A J

@ We call this term the direct part.

@ The remainder, Ep, is called the indirect part (=exchange plus correlation energy),

Ep = Ip — D(p, p)- J
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Direct and indirect part of Coulomb energy

@ One may approximate the electrostatic energy Ip by the classical electrostatic
energy, D(p, p), associated with the charge density p,

p(x)p(y)
D00.0) =5 [y T3] J

@ We call this term the direct part.

@ The remainder, Ep, is called the indirect part (=exchange plus correlation energy),

Ep = Ip — D(p, p)- J

@ Remark that in general there is no close form expression for Ep.
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Direct and indirect part of Coulomb energy

@ One may approximate the electrostatic energy Ip by the classical electrostatic
energy, D(p, p), associated with the charge density p,

p(x)p(y)
D00.0) =5 [y T3] J

@ We call this term the direct part.

@ The remainder, Ep, is called the indirect part (=exchange plus correlation energy),

Ep = Ip — D(p, p)- J

@ Remark that in general there is no close form expression for Ep.

@ The aim of this talk is to give a lower bound on Ep in terms of the charge density p
for d = 2. (To what extent can particles avoid each other and yet be constrained to
have a given single particle charge density? E. Lieb)
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Structure of the bound
Q Pute =e.

Matej Tusek (tu . Indirect Coulomb Energy



Structure of the bound
Q Pute =e.
@ Heuristic argument (decomposition into plane waves in a finite box A C R?) of
P. Dirac (1930):

Ep ~ —0.93 e2/3q_1/3/

p(x)*3 dx
R3

(g spin states, p = eN/|A])
= a reasonable lower bound:

Ep > —Ce2/3/

R

p(x)*3 dx.
3
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Structure of the bound
Q Pute =e.
@ Heuristic argument (decomposition into plane waves in a finite box A C R?) of
P. Dirac (1930):

Ep ~ —0.93 ez/3q_1/3/3 p(x)*3 dx
i3
(g spin states, p = eN/|A])

= a reasonable lower bound:

Ep > —Ce2/3/

p(x)*3 dx.
R3

@ C is not g dependent (any symmetric Py can come from a symmetric or
antisymmetric wave function with arbitrary value of g).
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Structure of the bound
Q Pute =e.
@ Heuristic argument (decomposition into plane waves in a finite box A C R?) of
P. Dirac (1930):

Ep ~ —0.93 ez/3q_1/3/3 p(x)*3 dx
i3
(g spin states, p = eN/|A])

= a reasonable lower bound:

Ep Z —C62/3/

p(x)*3 dx.
R3

© C is not g dependent (any symmetric Py can come from a symmetric or
antisymmetric wave function with arbitrary value of g).

@ Cis N dependent, G; = 1.092, G5 > 1.234, Cy < Cn+1, but we are looking for a
universal constant.
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Structure of the bound

Q Pute =e.
@ Heuristic argument (decomposition into plane waves in a finite box A C R?) of
P. Dirac (1930):

Ep ~ —0.93 e*/? ‘1/3/ p(x)*® dx
R3

(g spin states, p = eN/|A])
= a reasonable lower bound:

Ep > —Cez/3/ p(x)*3 dx.
R3
© C is not g dependent (any symmetric Py can come from a symmetric or
antisymmetric wave function with arbitrary value of g).
@ Cis N dependent, G; = 1.092, G5 > 1.234, Cy < Cn+1, but we are looking for a
universal constant.
@ Under homogeneous scaling of the coordinates, x — yx:

Ep > —Ce*? /dp

(x)*dx > ~Ep > —Ce?/3ydlem 1)/ p(x)* dx
R rd

which implies

o =

d

3/2 ford=2.

1 1_{4/3 for d =3
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History of the three-dimensional case (e = 1)

@ The first rigorous lower bound by E. Lieb (1979):

Ep > —8.52 / p(x)*® dx
R3
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History of the three-dimensional case (e = 1)

@ The first rigorous lower bound by E. Lieb (1979):

Ep > —8.52 / p(x)*® dx
R3

@ Substantially improved by E. Lieb and S. Oxford (1981):

Ep>—-168 [ p(x)*?dx

R3

Close to a lower bound 1.234(< G)!
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History of the three-dimensional case (e = 1)

@ The first rigorous lower bound by E. Lieb (1979):

Ep > —8.52 / p(x)*? dx
R3

@ Substantially improved by E. Lieb and S. Oxford (1981):
Ep>—-168 [ p(x)*?dx
R3
Close to a lower bound 1.234(< G)!

@ Slightly improved by G. Chan and C. Handy (1999) using some numerical
optimization:

Ep > —1.636 / p(x)** dx
R3
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@ The first bound with a gradient correction by R. Benguria, G. Bley, and M. Loss
(2011):

3
Ep > —1.4508 (1+ s)/ p()*? dx = = (v/p, pIV/P)
R3

where £ > 0 and

IVp(x) = /p(y)? dxdy.

Ix — y|*

Wbl = [ 1VakFnk ak = oo [ ]
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@ The first bound with a gradient correction by R. Benguria, G. Bley, and M. Loss
(2011):

3
Ep > —1.4508 (1+ e)/ p(x)"? dx = = (/P IpIV/P)
R3

where £ > 0 and

Vo lolve) = [ IVatoPiakl ak= ot [ [ WA VIO g,

[x —yl4

@ Alternative bounds with local gradient corrections by M. Lewin and E. Lieb (2014):

0.001206 v d
Ep > —(1.4508+g)/ p(x)¥/% dx — {02097 Jia IVp(x)] dx
R3

Jas [V (p(x)*72) 2 dx.
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@ The first bound with a gradient correction by R. Benguria, G. Bley, and M. Loss
(2011):

3
Ep > —1.4508 (1+ e)/ p(x)"? dx = = (/P IpIV/P)
R3

where £ > 0 and

Vo lolve) = [ IVatoPiakl ak= ot [ [ WA VIO g,

[x —yl4

@ Alternative bounds with local gradient corrections by M. Lewin and E. Lieb (2014):

0.001206 f |Vp(X)‘dX
Ep > —(1.4508 + ¢ / p(x)*3 dx —
( ) Jos P 02007 [V (p(x)}) dx.

Thomas-Fermi density of neutral atom of nuclear charge Z: p(x) = Z25(Z*/3x)

[ =22 [ 72 aIVIVe = 2PV

[wa=2 [ wa. [ weer=z [ joser

Matej Tusek (tusekmat@fjfi.cvut.cz) Indirect Coulomb Energy MAFIA 7/ 18



History of the two-dimensional case (e = 1)

@ The first lower bound for the indirect part by E. Lieb, J. Solovej, and J. Yngvason as
an auxiliary result when investigating large quantum dots in magnetic fields (1995):

Ep > —192\/27r/ p(x)*? dx.
R2

(In fact, the correct constant should be 36+/27.)
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History of the two-dimensional case (e = 1)

@ The first lower bound for the indirect part by E. Lieb, J. Solovej, and J. Yngvason as
an auxiliary result when investigating large quantum dots in magnetic fields (1995):

Ep > —192V/27 / p(x)*? dx.
R2

(In fact, the correct constant should be 36+/27.)

@ Considerably better result (to the expense of adding a gradient term) by
R. Benguria, P. Gallegos, and M. T. (2012):

Eo > ~(1+2)8 [ ol dx= 2 [ V(P ax

where 8 = 5.9045 and ¢ > 0.
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History of the two-dimensional case (e = 1)

@ The first lower bound for the indirect part by E. Lieb, J. Solovej, and J. Yngvason as
an auxiliary result when investigating large quantum dots in magnetic fields (1995):

Ep > —192V/27 / p(x)*? dx.
R2

(In fact, the correct constant should be 36+/27.)

@ Considerably better result (to the expense of adding a gradient term) by
R. Benguria, P. Gallegos, and M. T. (2012):

Eo > ~(1+2)8 [ ol dx= 2 [ V(P ax

where 8 = 5.9045 and ¢ > 0.
© Generalization of the previous result by R. Benguria and M. T. (2012):

Er> —(1+¢)B / ) dx = () / V() dx, J

where 1 < v <3, a=(3-7)/(27),1 < C(y) <2, and

-39 (L) e
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Idea of the proof

@ In the three-dimensional case, the best estimates on the indirect energy (with or
without gradient terms) were obtained with the help of Onsager’s electrostatic
inequality which in turn relies on Newton’s Theorem that does not hold true in the
two-dimensional case (with the three-dimensional Coulomb potential).
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Idea of the proof

@ In the three-dimensional case, the best estimates on the indirect energy (with or
without gradient terms) were obtained with the help of Onsager’s electrostatic
inequality which in turn relies on Newton’s Theorem that does not hold true in the
two-dimensional case (with the three-dimensional Coulomb potential).

o Instead of it, we use a stability of matter result for an auxiliary many particle system
introduced through the following energy functional of the electronic density p > 0
(cf. R. Benguria, M. Loss, H. Siedentop (2007)-Stability of UTFW model),

£(p) = & / V() dx 87 / e / V(<)o) dx+ D(p, ) + U. J

Here, with Z > 0 and R; € R?,

V4
V(x) = Z *—R| potential generated by nuclei

Z2
U= Z .repulsion of nuclei
1<i<j<K [Ri =Rl
D(p,p) = 1 // M dxdy ...electronic repulsion.
2 ) Jr2xpz Ix—yl
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Theorem (The stability result)
For all p > 0,

provided that

&(p) > 0,

Z < max h(o)
o€(0,1)

with
(v=1)/~
1 [(2a%ay 5 23—7 v\ 7! 21 b,
X b ) - =L
h(c) := min 2(C(’y)) o1\ =1) =9 64 57 —1°
v
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Key ingredients of the proof
The Lieb-Yau electrostatic inequality plus
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Key ingredients of the proof
The Lieb-Yau electrostatic inequality plus

Lemma

Let Dg stands for the disk of radius R and origin (0,0). Moreover let u = u(|x|) be such
that u(R) =0, and 1 < v < 3. Then the following uncertainty principle holds

<

‘/ [2u(]x]) + |x|u’(Ix])] £ ()«
Dgr

1/6

<= (C(’v) /| GO dx) v (C(a) /[ Il dx) |

where
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Key ingredients of the proof
The Lieb-Yau electrostatic inequality plus

Lemma

Let Dg stands for the disk of radius R and origin (0,0). Moreover let u = u(|x|) be such
that u(R) =0, and 1 < v < 3. Then the following uncertainty principle holds

<

‘/ [2u(]x]) + |x|u’(Ix])] £ ()«
Dgr

1/6

<= (C(v) /| GO dx) " (C(a) /[ Il dx) |

where

Corollary
Put u(r) = |x|7* — R™" and f = p®. Then for any ¢, d € R, we have

- 5
/ (i _ g) p(x) dx‘ < L(V) / |Vp(x)a|7 dx + Lw) p3/2 dx.
Dgr |X| R Dr 5

v Dgr

cd o

v
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Proof of the lower bound-a trick by Lieb and Thirring

@ In the functional £ set
@ K = N =the number of particles (namely electrons) in the original system
© Z =1 =the charge of the electron
QO Ri=x
Q o(x) =N [pan—1) Pn(x,x2,...,xy)dxa ... dxy

MAFIA 12 / 15
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Proof of the lower bound-a trick by Lieb and Thirring

@ In the functional £ set
@ K = N =the number of particles (namely electrons) in the original system
© Z =1 =the charge of the electron
Q Ri=x
Q p(x) = Nf]RZ(N—l) Pn(x,x2, -, xn)dxz ... dxy
o Multiply £ > 0 (the stability result) by Pn(x1,...,xn) and integrate over all
electronic configurations, i.e., over R2V:

# [V a8 [ 9 et DGoup)
R2

N Pn(x Pn(xi, ..., xn)
/ E (. X —= U p(x) dxdxq ... dxw
2(N+1)

i—1 [x = xi

2D(p,p)

n / Prla, o) g >0
RrR2N |Xi_Xj|
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@ Thus we have

Ip — D(p, p) = Ep > —bz/

P2 dx— 2 / V(o) dx
R2 R2

provided that the assumption of the stability result, 1 < maxg¢(o,1) h(o), is fulfilled.
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@ Thus we have

Ip = D(p,p) = Ep = —bz/

P2 dx— 2 / V(o) dx
R2 R2

provided that the assumption of the stability result, 1 < maxg¢(o,1) h(o), is fulfilled.

o h depends on a and b. Our lower bound follows if we think of b as a free parameter.
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Comparison with numerical results

By non-rigorous but still reasonable arguments by E. Rasdnen, S. Pittalis, K. Capelle,
C. Proetto (2009):

3D Astonishing correspondence with analytical result of E. Lieb, S. Oxford /
R. Benguria, G. Bley, and M. Loss:
Ep > —1.45/ p(x)*® dx
R3

2D Comparable with our constant (5.90):

Ep > —1.95/ p(x)3/2 dx
R2
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Thanks for listening!

@ R.D. Benguria, P. Gallegos, and M. Tusek. New Estimate on the Two-Dimensional
Indirect Coulomb Energy. Ann. H. Poincaré, Vol. 13, 2012. arXiv:1106.5772

@ R.D. Benguria and M. Tusek. Indirect Coulomb Energy for Two-Dimensional Atoms.
J. Math. Phys., Vol. 53, 2012. arXiv:1205.6926
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Newton's Theorem
Let 1 be a charge distribution that is rotationally symmetric w.r.t. the origin. Then

[ 1 1

Onsager's electrostatic inequality

Let e > 0, x; € R3(x; # x; for i # j), and jix, be a non-negative bounded function that
is spherically symmetric about x; with [ jix, dx = 1. Then for any non-negative integrable
function p,

€;ej
> ] 2 Dlere) + 2> " eD(p, pix;) — D € Dlpins, b))
i<j 7! J i i
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The Lieb-Yau electrostatic inequality
Let R; € R?® (R # R; for i # j), Dj := £ mini |Ri — R;|, and

V4 Z
P(x) = Xk: Ix — Re| mini|x — Ri|’

Then for any distribution © = py — p— with D(p+, pg ), D(p—, p—) < oo,

D(s.) - [ () + Y i 2 5 S 5

k<l
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Note on the two-dimensional Coulomb potential

@ From the first Maxwell equation, divE = o, where o stands for the planar charge

density, is easy to deduce that the two-dimensional Coulomb potential is
proportional to In|x|.

o Nevertheless, P. Duclos, P. Stovicek, and M.T. (2010) proved that

Jim [[(Ha = )7~ (h+ (x/a)? ~ ) ©0] = 0
where

Hy = —Asp — ﬁ in L2(R? x (—a/2,2/2))

1
h=—Aop — Pl L*(R?).

o M.T. (2014) generalized the above result to atomic Hamiltonians.
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