## Discrete Dirac operator and its non-relativistic limit

## Ruben Karapetyan

Supervisor: Ing. Matěj Tušek, Ph.D.

FNSPE CTU in Prague


## Outline

- Motivation
- Goals of the thesis
- 1st approach - Laurent operators
- 2nd approach - Matrix decomposition (Ch. Tretter, 2008)
- 3rd approach - Supersymetry (B. Thaller, 1992)


## Motivation

## Physics

1D example in space $L^{2}(\mathbb{R})$ :
$\hat{H}=-\frac{\hbar}{2 m} \frac{\partial^{2}}{\partial x^{2}}+\hat{V} \approx-\triangle+\hat{V}$

## Discrete 1D version

Space $\ell^{2}(\mathbb{Z})$ of sequences $\left(a_{n}\right)_{n=-\infty}^{+\infty}$ where $n \in \mathbb{Z}$
$\hat{H}=H+V$ with $V \in B\left(\ell^{2}\right), H^{\varepsilon}=\frac{1}{2 m}\left(\begin{array}{ccccc}\ddots & \ddots & \ddots & \ddots & \\ \ddots & 2 & -1 & 0 & \ddots \\ \ddots & -1 & 2 & -1 & \ddots \\ \ddots & 0 & -1 & 2 & \ddots \\ & \ddots & \ddots & \ddots & \ddots\end{array}\right)$.

## Necessary definitions

## Operators on $B\left(\ell^{2}(\mathbb{Z})\right)$

$e_{n}=(\ldots, 0,1,0, \ldots) \Longrightarrow \varepsilon=\left(e_{n}\right)_{n \in \mathbb{Z}}$ standard ON basis $d^{-} e_{n}=-i\left(e_{n}-e_{n-1}\right)$ and $d^{+} e_{n}=-i\left(e_{n+1}-e_{n}\right)$, then $H=\frac{1}{2 m} d^{+} d^{-}$

Operators on $B\left(\ell^{2}(\mathbb{Z}) \oplus \ell^{2}(\mathbb{Z})\right)$
$H \oplus 0=\left(\begin{array}{cc}\frac{1}{2 m} d^{+} d^{-} & 0 \\ 0 & 0\end{array}\right), H$ non-relativistic Laplacian
$D_{c}=\left(\begin{array}{cc}m c^{2} & c d^{-} \\ c d^{+} & -m c^{2}\end{array}\right)$ discrete relativistic Dirac operator

## Resolvent

$$
R_{\mathbb{A}}(\lambda)=(\mathbb{A}-\lambda \mathbb{I})^{-1} \text { for } \lambda \in \rho(\mathbb{A})
$$

## Dirac operator

- is formally a square root of a Laplacaian
- discrete Dirac

$$
\begin{aligned}
D_{c}^{2} & =\left(\begin{array}{cc}
m^{2} c^{4}-c^{2} d^{-} d^{+} & 0 \\
0 & -m^{2} c^{4}+c^{2} d^{+} d^{-}
\end{array}\right) \\
& =\left(\begin{array}{cc}
m^{2} c^{4}-2 m c^{2} H & 0 \\
0 & -m^{2} c^{4}+2 m c^{2} H
\end{array}\right)
\end{aligned}
$$

- We study shifted discrete Dirac

$$
D_{c}-m c^{2} \mathbb{I}=\left(\begin{array}{cc}
0 & c d^{-} \\
c d^{+} & -2 m c^{2}
\end{array}\right)
$$

## Goals of the thesis

- Convergence of shifted Dirac in norm resolvent sense

$$
\left\|\left(D_{c}-m c^{2}-\lambda\right)^{-1}-(H-\lambda)^{-1} \oplus 0\right\|_{B\left(\ell^{2} \oplus \ell^{2}\right)} \xrightarrow{c \rightarrow \infty} 0
$$

- Taylor series of $\left(D_{c}-m c^{2}-\lambda\right)^{-1}$
- Adding potential $V \in B\left(\ell^{2} \oplus \ell^{2}\right)$

$$
\lim _{c \rightarrow \infty}\left(D_{c}-m c^{2}+V-\lambda\right)^{-1}=? \text { in } B\left(\ell^{2} \oplus \ell^{2}\right)
$$

## Laurent operators

## Principle

Using $U$ we map the $O N$ basis of $B\left(\ell^{2}\right)$ to $B\left(L^{2}\right)$.
By this we transform our problem from $B\left(\ell^{2}(\mathbb{Z}) \oplus \ell^{2}(\mathbb{Z})\right)$ to $B\left(L^{2}([0,2 \pi]) \oplus L^{2}([0,2 \pi])\right)$.
$U$ is a linear bijective isometry.


Figure: principle of using Laurent operators

## Laurent operators

Requirement of constant diagonals.
E.g.

$$
\begin{aligned}
& d^{+} e_{n}=-i\left(e_{n+1}-e_{n}\right), \\
& \left(d^{+}\right)^{\varepsilon}=-i\left(\begin{array}{ccccc}
\ddots & \ddots & \ddots & \ddots & \ddots \\
\ddots & -1 & 1 & 0 & \ddots \\
\ddots & 0 & -1 & 1 & \ddots \\
\ddots & 0 & 0 & -1 & \ddots \\
\ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
\end{aligned}
$$

## Laurent operators

## Transfering the operators

1. $U\left( \pm m c^{2} \mathbb{I}_{\ell_{2}}\right) U^{-1}= \pm m c^{2} \mathbb{I}_{L_{2}}$
2. $U d^{+} U^{-1}=\left(-i\left(e^{i t}-1\right)\right)$
3. $U d^{-} U^{-1}=\left(-i\left(1-e^{-i t}\right)\right)$
4. $U H U^{-1}=\left(\frac{1-\cos t}{m}\right)$
5. $U \oplus U\left(D_{c}-m c^{2} \mathbb{I}_{\ell_{2}}\right) U^{-1} \oplus U^{-1}=$ $=\left(\begin{array}{cc}U O U^{-1} & U c d^{+} U^{-1} \\ U c d^{-} U^{-1} & U\left(-2 m c^{2}\right) U^{-1}\end{array}\right)=$
$\left(\begin{array}{cc}0 & -i c\left(e^{i t}-1\right) \\ -i c\left(1-e^{-i t}\right) & -2 m c^{2} \mathbb{I}_{L_{2}}\end{array}\right)=\mathbb{D}_{c}$
6. $U \oplus U(H \oplus 0) U^{-1} \oplus U^{-1}=\left(\begin{array}{cc}\frac{1-\cos t}{m} & 0 \\ 0 & 0\end{array}\right)=\mathbb{H} \oplus 0$

## Resolvent in $B\left(L^{2} \oplus L^{2}\right)$

## Formulation of the problem in $B\left(L^{2} \oplus L^{2}\right)$

Goal: convergence in norm resolvent sense of $\mathbb{D}_{c}$

$$
\left(\mathbb{D}_{c}-\lambda\right)^{-1}=\left(\begin{array}{cc}
\frac{-2 m c^{2}-\lambda}{\lambda^{2}+2 \lambda m c^{2}+2 c^{2}(\cos t-1)} & \frac{i c\left(1-e^{-i t}\right)}{\lambda^{2}+2 \lambda m c^{2}+2 c^{2}(\cos t-1)} \\
\frac{i c\left(e^{i t}-1\right)}{\lambda^{2}+2 \lambda m c^{2}+2 c^{2}(\cos t-1)} & \frac{-\lambda}{\lambda^{2}+2 \lambda m c^{2}+2 c^{2}(\cos t-1)}
\end{array}\right)
$$

to the operator

$$
(\mathbb{H}-\lambda)^{-1} \oplus 0=\left(\begin{array}{cc}
\left(\frac{1-\cos t}{m}-\lambda\right)^{-1} & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
\frac{m}{1-\cos t-m \lambda} & 0 \\
0 & 0
\end{array}\right) .
$$

## Laurent operators

## Theory

1. $A, B, C, D \in B\left(L^{2}([0,2 \pi])\right)$

$$
\begin{align*}
& \left\|\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\right\|_{B\left(L^{2} \oplus L^{2}\right)} \\
& \leq K\left(\|A\|_{B\left(L^{2}\right)}+\|B\|_{B\left(L^{2}\right)}+\|C\|_{B\left(L^{2}\right)}+\|D\|_{B\left(L^{2}\right)}\right) \tag{2}
\end{align*}
$$

for some $K>0$.
2. $f \in L^{2}([0,2 \pi])$

$$
\begin{equation*}
\left\|M_{f}\right\|_{B\left(L^{2}\right)}=\|f\|_{\infty}=\inf \{c>0 \mid \mu(\{t \in[0,2 \pi] \mid f(t)>c\})=0\} . \tag{3}
\end{equation*}
$$

## Laurent operators

## Using (1), (3)

$$
\begin{aligned}
& \left\|\left(\mathbb{D}_{c}-\lambda\right)^{1}-(\mathbb{H}-\lambda)^{-1} \oplus 0\right\|_{B\left(L^{2} \oplus L^{2}\right)}= \\
& =\left\|\left(\begin{array}{ll}
\frac{-2 m c^{2}-\lambda}{\lambda^{2}+2 \lambda m c^{2}+c^{2}(\cos t-1)} & \frac{i c\left(1-e^{-i t}\right)}{\lambda^{2}+2 \lambda m c^{2}+2 c^{2}(\cos t-1)} \\
\frac{i c\left(e^{i t}-1\right)}{\lambda^{2}+2 \lambda m c^{2}+2 c^{2}(\cos t-1)} & \frac{-\lambda}{\lambda^{2}+2 \lambda m c^{2}+2 c^{2}(\cos t-1)}
\end{array}\right)-\left(\begin{array}{cc}
\frac{m}{1-\cos t-m \lambda} & 0 \\
0 & 0
\end{array}\right)\right\|_{B\left(L^{2} \oplus L^{2}\right)} \\
& \leq\left\|\frac{-2 m c^{2}-\lambda}{\lambda^{2}+2 \lambda m c^{2}+2 c^{2}(\cos t-1)}-\frac{m}{1-\cos t-m \lambda}\right\|_{B\left(L^{2}\right)}+\left\|\frac{i c\left(1-e^{-i t}\right)}{\overline{\lambda^{2}+2 \lambda m c^{2}+2 c^{2}(\cos t-1)}}\right\|_{B\left(L^{2}\right)} \\
& +\left\|\frac{i c\left(e^{i t}-1\right)}{}| | \frac{-\lambda}{\lambda^{2}+2 \lambda m c^{2}+2 c^{2}(\cos t-1)}\right\|_{B\left(L^{2}\right)}+\left\|\frac{\lambda^{2}+2 \lambda m c^{2}+2 c^{2}(\cos t-1)}{}\right\|_{B\left(L^{2}\right)} \\
& \leq\left|\frac{2 \lambda}{K L c^{2}}\right|+\left|\frac{2}{L c}\right|+\left|\frac{2}{L c}\right|+\left|\frac{\lambda}{L c^{2}}\right| \xrightarrow{c \rightarrow \infty} 0 .
\end{aligned}
$$

## Laurent operators

## Taylor's series in 1/c

$$
\left(\mathbb{D}_{c}-\lambda\right)^{-1}=(\mathbb{H}-\lambda)^{-1} \oplus 0+\frac{1}{c} \mathbb{X}_{1}+\frac{1}{c^{2}} \mathbb{X}_{2}+\frac{1}{c^{3}} \mathbb{X}_{3}+\ldots
$$

meaning

$$
\left\|\left(\mathbb{D}_{c}-\lambda\right)^{-1}-(\mathbb{H}-\lambda)^{-1} \oplus 0-\sum_{n=1}^{\infty} \frac{1}{c^{n}} X_{n}\right\|_{B\left(L^{2} \oplus L^{2}\right)}=0
$$

for some neighborhood of $1 / c=0$.

## Laurent operators

Candidates using classical Taylor's expansion in $1 / c$

$$
\begin{aligned}
& \mathbb{X}_{2 j}= \\
& \left(\begin{array}{cc}
\left(\frac{-2 m}{2(\lambda m+\cos t-1)}+\frac{1}{\lambda}\right)\left(\frac{-\lambda^{2}}{2(\lambda m+\cos t-1)}\right)^{j} & 0 \\
0 & \frac{-\lambda}{2(\lambda m+\cos t-1)}\left(\frac{-\lambda^{2}}{2(\lambda m+\cos t-}\right. \\
\mathbb{X}_{2 j+1}= \\
\left(\begin{array}{cc}
0 & i\left(1-e^{-i t}\right) \\
(\lambda m+\cos t-1) \\
(\lambda m+\cos t-1) \\
2(\lambda m+\cos t-1)
\end{array}\right) & 0
\end{array}\right)
\end{aligned}
$$

## Laurent operators

Verifying the candidates are correct

## Theorem

Suppose $f_{\varepsilon}(t)$ function with parametre $\varepsilon \in[0, M)$, for some $M>0$ is $(\forall \varepsilon<M)\left(f_{\varepsilon}(\cdot) \in L^{2}([0,2 \pi])\right)$.
Suppose we have full Taylor expansion for $\varepsilon=0$

$$
\forall t \in[0,2 \pi] f_{\varepsilon}(t)=\sum_{n=0}^{\infty} a_{n}(t) \varepsilon^{n}=a_{0}(t)+\sum_{n=1}^{\infty} a_{n}(t) \varepsilon^{n}
$$

$\exists G, L>0\left\|a_{n}\right\|_{\infty} \leq G L^{n}$.
If $M_{f} \in B\left(L^{2}([0,2 \pi])\right)$ is multiplication operator, $\forall N \in \mathbb{N}_{0}$ $f_{\varepsilon}^{N}(t)=a_{0}+\sum_{n=1}^{N} a_{n} \varepsilon^{n}$, then

$$
\left\|M_{f}-M_{f_{\varepsilon}^{N}}\right\|_{B\left(L^{2}([0,2 \pi])\right)} \leq G L^{N+1} \varepsilon^{N+1} \xrightarrow{\varepsilon \rightarrow 0+} 0 .
$$

## Laurent operators

We obtain for some neighborhood of $c=+\infty$

$$
\left(D_{c}-m c^{2}-\lambda\right)^{-1}=(H-\lambda)^{-1} \oplus 0+\sum_{n=1}^{\infty} \frac{1}{c^{n}} X_{n} \text { in } B\left(\ell^{2} \oplus \ell^{2}\right)
$$

by transforming

$$
X_{n}=U^{-1} \oplus U^{-1} \mathbb{X}_{n} U \oplus U
$$

$$
\begin{aligned}
& X_{2 j}= \\
& \left(\begin{array}{cc}
\left(\frac{1}{\lambda}+(H-\lambda)^{-1}\right)\left(\frac{\lambda^{2}}{2 m}(H-\lambda)^{-1}\right)^{j} & 0 \\
0 & \frac{\lambda}{2 m}(H-\lambda)^{-1}\left(\frac{\lambda^{2}}{2 m}(H-\lambda)^{-1}\right)^{j}
\end{array}\right)
\end{aligned}
$$

$X_{2 j+1}=$

$$
\left(\begin{array}{cc}
0 & -d^{-} \frac{1}{m}(H-\lambda)^{-1}\left(\frac{\lambda^{2}}{2 m}(H-\lambda)^{-1}\right)^{j} \\
-d^{+} \frac{1}{m}(H-\lambda)^{-1}\left(\frac{\lambda^{2}}{2 m}(H-\lambda)^{-1}\right)^{j} & 0
\end{array}\right) .
$$

## Matrix decomposition

## Ch. Tretter - Spectral Theory of Block Operator Matrices

Let $A, B, C, D \in B(\mathscr{H})$,

$$
\mathbb{X}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in B(\mathscr{H} \oplus \mathscr{H})
$$

Then for $\lambda \notin \sigma(D)$

$$
\mathbb{X}-\lambda=\left(\begin{array}{cc}
\mathbb{I} & B(D-\lambda)^{-1} \\
0 & \mathbb{I}
\end{array}\right)\left(\begin{array}{cc}
S(\lambda) & 0 \\
0 & D-\lambda
\end{array}\right)\left(\begin{array}{cc}
\mathbb{I} & 0 \\
(A-\lambda)^{-1} B & \mathbb{I}
\end{array}\right),
$$

where $S(\lambda)=A-\lambda-B(D-\lambda)^{-1} C$ is the Schur complement of $\mathbb{X}$.

## Matrix decomposition

## Using the decomposition

In our case $\mathscr{H}=\ell^{2}$.

$$
\begin{aligned}
& D_{c}-m c^{2}-\lambda= \\
& =\left(\begin{array}{ll}
\mathbb{I} & c d^{-}\left(-2 m c^{2}-\lambda\right)^{-1} \\
0 & \mathbb{I}
\end{array}\right)\left(\begin{array}{cc}
S(\lambda) & 0 \\
0 & -2 m c^{2}-\lambda
\end{array}\right)\left(\begin{array}{cc}
\mathbb{I} & 0 \\
\left(-2 m c^{2}-\lambda\right)^{-1} c d^{-} & \mathbb{I}
\end{array}\right)
\end{aligned}
$$

where

$$
S(\lambda)=c d^{-}\left(2 m c^{2}+\lambda\right)^{-1} c d^{+}-\lambda
$$

## Matrix decomposition

## Resolvent

For bounded operators, $\lambda \in \rho\left(D_{c}-m c^{2}\right)$
$\left(D_{c}-m c^{2} \mathbb{I}-\lambda\right)^{-1}=$
$\left(\begin{array}{cc}\mathbb{I} & 0 \\ -\left(-2 m c^{2}-\lambda\right)^{-1} c d^{-} & \mathbb{I}\end{array}\right)\left(\begin{array}{cc}S^{-1}(\lambda) & 0 \\ 0 & \frac{-1}{2 m c^{2}+\lambda}\end{array}\right)\left(\begin{array}{cc}\mathbb{I} & -c d^{-}\left(-2 m c^{2}-\lambda\right)^{-1} \\ 0 & \mathbb{I}\end{array}\right)$.

## Theory

Multiplying bounded operators is continuous.
For $\left(X_{n}\right)_{n=1}^{+\infty},\left(Y_{n}\right)_{n=1}^{+\infty},\left(Z_{n}\right)_{n=1}^{+\infty} \subset B(\mathscr{H})$ :

$$
X_{n} \xrightarrow{n \rightarrow \infty} X, Y_{n} \xrightarrow{n \rightarrow \infty} Y, Z_{n} \xrightarrow{n \rightarrow \infty} Z \Longrightarrow X_{n} Y_{n} Z_{n} \xrightarrow{n \rightarrow \infty} X Y Z
$$

in the strong operator topology.

## Matrix decomposition

## Proving that

$$
\left.\begin{array}{l}
\left(\begin{array}{cc}
\mathbb{I} & 0 \\
-\left(-2 m c^{2}-\lambda\right)^{-1} c d^{-} & \mathbb{I}
\end{array}\right) \xrightarrow{c \rightarrow \infty}\left(\begin{array}{ll}
\mathbb{I} & 0 \\
0 & \mathbb{I}
\end{array}\right) \\
\left(\begin{array}{cc}
S^{-1}(\lambda) & 0 \\
0 & \frac{-1}{2 m c^{2}+\lambda}
\end{array}\right) \xrightarrow{c \rightarrow \infty}\left(\begin{array}{cc}
(H-\lambda)^{-1} & 0 \\
& 0
\end{array} 0\right.
\end{array}\right)
$$

we obtain for $\forall \lambda \in \rho\left(D_{c}-m c^{2} \mathbb{I}\right)$

$$
\left(D_{c}-m c^{2}-\lambda\right)^{-1} \xrightarrow{c \rightarrow \infty}(H-\lambda)^{-1} \oplus 0 \text { in } B\left(\ell^{2} \oplus \ell^{2}\right) .
$$

## Matrix decomposition

## Adding potential

$$
\text { Let } \begin{aligned}
V= & \left(\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right) \in B\left(\ell^{2} \oplus \ell^{2}\right), \lambda \in \rho\left(D_{c}-m c^{2} \mathbb{I}+V\right) \\
& \left(D_{c}-m c^{2}+V-\lambda\right)^{-1}= \\
& =\left(\begin{array}{cc}
\mathbb{I} \\
-\left(\left(-2 m c^{2}-\lambda\right) \mathbb{I}+V_{22}\right)^{-1}\left(c d^{+}+V_{21}\right) & \mathbb{I}
\end{array}\right) \times \\
& \times\left(\begin{array}{cc}
\hat{S}_{1}^{-1}(\lambda) & 0 \\
0 & \left(\left(-2 m c^{2}-\lambda\right) \mathbb{I}+V_{22}\right)^{-1}
\end{array}\right) \times \\
& \times\left(\begin{array}{cc}
\mathbb{I} & \left.-\left(c d^{-}+V_{12}\right)\left(\left(-2 m c^{2}-\lambda\right) \mathbb{I}+V_{22}\right)\right)^{-1} \\
0 & \mathbb{I}
\end{array}\right)
\end{aligned}
$$

## Matrix decomposition

## Proving that

$$
\begin{aligned}
& \left(\begin{array}{cc}
\mathbb{I} & 0 \\
-\left(\left(-2 m c^{2}-\lambda\right)+V_{22}\right)^{-1}\left(c d^{+}+V_{21}\right) & \mathbb{I}
\end{array}\right) \xrightarrow{c \rightarrow \infty}\left(\begin{array}{ll}
\mathbb{I} & 0 \\
0 & \mathbb{I}
\end{array}\right) \\
& \left(\begin{array}{cc}
\hat{S}_{1}^{-1}(\lambda) & 0 \\
0 & \left(\left(-2 m c^{2}-\lambda\right)+V_{22}\right)^{-1}
\end{array}\right) \xrightarrow{c \rightarrow \infty}\left(\begin{array}{cc}
\left(H+V_{11}-\lambda\right)^{-1} & 0 \\
0 & 0
\end{array}\right) \\
& \left(\begin{array}{lll}
\mathbb{I} & \left.-\left(c d^{-}+V_{12}\right)\left(\left(-2 m c^{2}-\lambda\right)+V_{22}\right)\right)^{-1} \\
0 & \mathbb{I}
\end{array} \xrightarrow{c \rightarrow \infty}\left(\begin{array}{ll}
\mathbb{I} & 0 \\
0 & \mathbb{I}
\end{array}\right)\right.
\end{aligned}
$$

we obtain

$$
\left(D_{c}-m c^{2}+V-\lambda\right)^{-1} \xrightarrow{c \rightarrow \infty}\left(H+V_{11}-\lambda\right)^{-1} \oplus 0 \text { in } B\left(\ell^{2} \oplus \ell^{2}\right) .
$$

## Supersymetry

## Bernd Thaller - The Dirac Equation, 1992

$D \in \mathscr{L}(\mathscr{H})$ is a Dirac operator with supersymetry if

$$
D=Q+M \tau
$$

where

- $Q$ is self-adjoint and $\tau Q=-Q \tau$ ( $Q$ is a supercharge with respect to $\tau$ )
- $M>0$ commutes with $Q, \tau$

$$
D_{c}=c \underbrace{\left(\begin{array}{cc}
0 & d^{-} \\
d^{+} & 0
\end{array}\right)}_{Q}+\underbrace{m c^{2} \mathbb{Z}}_{M} \underbrace{\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)}_{\tau}
$$

$$
D_{\infty}=\frac{1}{2 m} Q^{2}=\frac{1}{2 m}\left(\begin{array}{cc}
d^{-} d^{+} & 0 \\
0 & d^{+} d^{-}
\end{array}\right)=\left(\begin{array}{cc}
H & 0 \\
0 & H
\end{array}\right)=H \oplus H .
$$

## Supersymetry

## Bernd Thaller - The Dirac Equation (1992)

For $\forall \lambda \in \mathbb{C} \backslash \mathbb{R}$
$\left(D_{c}-m c^{2}-\lambda\right)^{-1}=$
$\left(\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+\frac{1}{2 m c^{2}}(c Q+\lambda)\right)\left(\mathbb{I}-\frac{\lambda^{2}}{2 m c^{2}}(H \oplus H-\lambda)^{-1}\right)^{-1}(H \oplus H-\lambda)^{-1}$
$\xrightarrow{c \rightarrow \infty}\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}(H-\lambda \mathbb{I})^{-1} & 0 \\ 0 & (H-\lambda \mathbb{I})^{-1}\end{array}\right)$.

## Supersymetry

## Adding potential, analyticity

Using Theorem 6.4, 6.5 (B. Thaller, 1992)
Let $V=\left(\begin{array}{cc}V_{11} & 0 \\ 0 & V_{22}\end{array}\right) \in B\left(\ell^{2} \oplus \ell^{2}\right)$ be a symmetric potential.
Then $\left(D_{c}-m c^{2} \mathbb{I}+V-\lambda\right)^{-1}$ is holomorphic in $1 / c$ on a $\lambda$ depending neighborhood of $1 / c=0$.

$$
\left(D_{c}-m c^{2}+V-\lambda\right)^{-1}=\sum_{n=0}^{+\infty} \frac{1}{c^{n}} R_{n}(\lambda)
$$

where

$$
\begin{aligned}
& R_{0}(\lambda)=\left(\begin{array}{cc}
\left(H+V_{11}-\lambda\right)^{-1} & 0 \\
0 & 0
\end{array}\right) \\
& R_{1}(\lambda)=\left(\begin{array}{cc}
0 & \frac{1}{m} d^{+}\left(H+V_{11}-\lambda\right)^{-1} \\
\frac{1}{m}\left(H+V_{11}-\lambda\right)^{-1} d^{-} & 0
\end{array}\right)
\end{aligned}
$$

## Thank you for attention.



## References

囯 Christiane Tretter（2008）
Spectral Theory Of Block Operator Matrices And Applications
围 Bernd Thaller（1992）
The Dirac Equation（Theoretical and Mathematical Physics）
圊 M．Havlíček，P．Exner，J．Blank（1993） Lineární operátory v kvantové fyzice

