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Absolute Continuous Spectrum

I Decomposition of measure µ = µac + µsc + µpp

De�nition
Measure µ is absolutely continuous with respect to Lebesgue measure λ
if and only if ∀A, λ (A) = 0⇒ µ (A) = 0.

I When µ is spectral measure of operator H then

σac (H) = supp (µac) ,

σsc (H) = supp (µsc) ,

σp (H) = supp (µpp) .

[8]
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Direct Integral

I The concept of a elegant solution to spectral properties
I Separable Hilbert space H ′ with measure (M, µ)

I H = L2 (M, dµ; H ′) space of all square integrable function fromM
to H ′

I H is called constant �ber direct integral and we write
H =

∫
⊕M H ′dµ

I �Continuous generalization of direct sum�[1]
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De�nition
A bounded operator A on

∫
⊕M H is said to be decomposed by the direct

integral decomposition if and only if there is a function A (·) in
L∞ (M, dµ,L (H ′)) so that for all ψ ∈H ,

(Aψ) (ξ) = A (ξ)ψ (ξ)

We then call A decomposable and write

A =

∫
⊕M

A (ξ) dµ (ξ)

The A (ξ) are called the �bers of A.[1]
I De�nition for an unbounded operator is a little bit di�erent
I Foreshorten the operator domain in unbounded case

D (A) = {ψ ∈H | ψ (ξ) ∈ D (A (ξ)) a.e.;.∫
M

‖ A (ξ)ψ (ξ) ‖2H ′ dµ (ξ) <∞}

[1]
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Iwatsuka Model

I H =
(
1
i
∂
∂x − a (x , y)

)2
+
(
1
i
∂
∂y − b (x , y)

)2
on H = L2

(
R2
)
,where a, b ∈ C∞

(
R2
)

B (x , y) =
∂b

∂x
(x , y)− ∂a

∂y
(x , y)

I The asymptotically constant B, it means B (x , y)

√
x2+y2→∞
−− −→ B0.

I For B = 0, σess (H) = [0,∞)
I Otherwise

σess (H) = {(2k − 1) |B0| | k ∈ N} .
[2]
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Iwatsuka Model

Theorem
B (x , y) depends only on x , B (x) ∈ C∞ and there exists constant M±
satisfying 0 < M− ≤ B (x) ≤ M+ < +∞ for all x

1. lim supx→−∞ B (x) < lim infx→+∞ B (x) or
lim supx→+∞ B (x) < lim infx→−∞ B (x)

2. B (x) = B0 if |x | is large and there is a point x̄ such that B ′ (x) ≤ 0
for x ≤ x̄ and B ′ (x) ≥ 0 for x ≥ x̄ and B ′ (x) is not identically 0.

If holds 1. or 2. Then spectrum of H is Absolutely continuous.

I If limx→±∞ B (x) = B± then spectrum has a band structure

σ (H) =
∞⋃
n=1

[(2n − 1)B−, (2n − 1)B+]



Iwatsuka Model
I Alternative theorem [3]

Theorem
Let holds previous property and in addition B is not constant a there is a
point x0 ∈ R such that for all points x1 ≤ x0 ≤ x2 holds one of the
following conditions

1. B (x1) ≤ B (x0) ≤ B (x2)

2. B (x1) ≥ B (x0) ≥ B (x2)

Then H is absolutely continuous.

B->0

B+>B->0

Obrázek: Motion of electron
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E�ect of Potential
I Potential wall

U (x) = 0 for x ≤ 0, (1)

U (x) = µxγ for x > 0,

µ > 0, γ ≥ 1.

H0 = H + U (x)⇒ σ (H0) = [B,+∞] . (2)

I Potential on the whole plane U (x) = µx ∀x ⇒ σ (H0) = R
I Adding a random potential

Vω (~r) =
∑

(n,m)∈Z

ωn,mv (x − n, y −m) , (3)

where v (~r) = 0 for |~r | ≥ 1
2
and ωn,m is i.i.d. random variable, the

discrete spectrum can be found [4]
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Introduction to Problem

I Lets have a problem with the magnetic Laplacian

Hψ (r , θ, z) =
(
i∇+ ~A

)2
ψ (r , θ, z) (4)

with Dirichlet condition

ψ (r , θ, d1) = 0,

ψ (r , θ, 0) = 0 pro (r , θ, 0) /∈ Ω0,

ψ (r , θ,−d2) = 0.

I So the domain of operator

D (H) = {ψ ∈ H2 (Ω) |
(
i∇+ ~A

)2
ψ ∈ L2 (Ω)

ψ (~x) = 0 pro ~x ∈ ∂Ω ∪ Σr Ω0}
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Local Magnetic Field

I De�nition of local magnetic �eld [7]
Choose p ∈ ΩB so that ∃R > 0,B (p,R) ⊂ ΩB . For r ∈ (0,R)

Φ (r) =
1
2π

∫
B(r ,p)

Bdxdydz

is not identically equal zero.
I In area ΩB , the �eld is homogeneous and vector potential is given as

~A =
(
− 1

2
B (y − y0) , 1

2
B (x − x0) , 0

)
I Outside of area ΩB , the �eld is zero and vector potential is

~A = Φ

(
−y + y0

(x − x0)2 + (y − y0)2
,

x − x0

(x − x0)2 + (y − y0)2
, 0

)
. (5)



Laterally coupled layers with window and area with non-zero magnetic
�eld

d1

d2

B

Dirichlet condition

Window

a



Symmetric Case

I For d1 = d2 =: d it is enough to consider only one layer with
Neumann condition in window

Essential Spectrum

Theorem
λ ∈ σess (H)⇐⇒ Exist (ψn) ⊂ D (H) , for every n ∈ N, ‖ ψn

f
=

1 a Tψn − λψn → 0, ψn
w→ 0

Theorem
Spectrum of H0 and H+∞ holds σ

(
H0
)

= [
(
π
d

)2
,+∞) and

σ (H+∞) = [
(
π
2d

)2
,+∞).

And from that comes H

Theorem
For essential spectrum of H holds

σess (H) = [
(π
d

)2
,+∞).



Discrete Spectrum
I Neumann-Dirichlet bracketing

Ω−% = {(r , θ, z) ∈ [0, %]× [0, 2π]× [0, d ]} ,
Ω+
% = Ω�Ω−%

I Application of Dirichlet-Neumann bracketing

H−,N% ⊕ H+,N
% ≤ H ≤ H−,D% ⊕ H+,D

%

I Reduction problem to plane
I Use of Laplacian monotonicity

Theorem
[1] Let Ω1 and Ω2 are bounded areas. In addition, Ω1 ⊂ Ω2. Then for

eigenvalues of Dirichlet magnetic laplacian
(
i∇+ ~A

)2
it holds

λk (Ω2) ≤ λk (Ω1) for all k .

I Without prejudice to the generality reduction to disc
I Conditions of existence of eigenstates are given from function

Ψ (r) = c · e− Br2
4 rmM

(
k2 − λ+ B

2B
,m + 1,

Br2

2

)
Ψ (r) = cJ|m−Φ|

(√
λr
)



Dirichlet Bracketing

M

(
−λ

2
D − B

2B
, 1,

1
2
B%2

)
= 0 J|m−Φ|

(√
λD%

)
= 0

Theorem

Let B%2 ≥ 4, then operator H =
(
i∇+ ~A

)2
de�ned in equation (4) has

nonempty discrete spectrum, If there is a disc with radius % inside
Ω0 ∩ ΩB such that

B + eB2%2e−
1
2B%

2
<

3
4
π2

d2
.

Theorem
Magnetic laplacian H has nonempty discrete spectrum, if there is a disc
with radius % > 0 inside Ω0 r ΩB such that holds

2√
3π

√(
3π
4

)2

+ Φ2 <
%

d
.



Neumann Bracketing

−M
(
−λ

2
N − B

2B
, 1,

1
2
Ba2

)
+
−λ2N + B

B
M

(
−λ

2
N − 3B
2B

, 2,
1
2
Ba2

)
= 0,

d

dr
J|m−Φ|

(√
λD%

)
= 0

Theorem

Operator
(
i∇+ ~A

)2
de�ned in equation (4) has empty discrete

spectrum, if there exists disc D (a, %) ⊃ Ω0 ∩ ΩB with radius % > 0 a
C > 0, B%2 ≥ C such that

Θ0B − C1
1
%
B

1
2 − C

1
%2

>
3
4

(π
d

)2
.

Theorem
Magnetic laplacian (4) has empty discrete spectrum, if there is disc
D (a, %) ⊃ Ω0 r ΩB with radius % > 0, such that

2√
3π

√
0.6538 + Φ >

%

d
.



Numerical results
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Figure: Dirichlet and Neumann condition for Kummer function. Blue color
denotes numerical solution λ2D , λ

2

N with respect to B for m = 0, % = 1. Orange
m = 1, green m = 2, red m = 3. Brown curve denotes function Θ0B and
purple B.
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Asymmetric Case
I d := max {d1, d2}
I Total width of both layers D := d1 + d2

I Ratio η = min{d1,d2}
max{d1,d2} .

Essential Spectrum

σess (H) = [
(
π
d

)2
,+∞)

Theorem
Let H is operator de�ned in (4). Then H has discrete spectrum if and

only if the lowest eigenvalue λ2D of magnetic laplacian
(
i∇+ ~̂A

)2
D
in area

Ω0 r ΩB resp. Ω0 ∩ ΩB with Dirichlet condition holds

λ2
D
<
(π
d

)2 (η2 + 2η
)

(1 + η)2
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Homogeneous Magnetic Field in Whole Layer

I Direct integral H '
∫
⊕ H (ξ) dξ

I H (ξ) = − ∂2

∂x2 + (ξ + Bx)2 − ∂
∂z2

I Separation of variables

I Eigenvalues of H (ξ) are non-degenerate λn,m = B (2n + 1) +
(
πm
d

)2
I Spectrum has pure point structure with eigenfunctions

ψn,m (x , z) = C · Xn

(
x +

ξ

B

)
sin
(πmz

d

)
, .

Xn (τ) =

(
B

π

) 1
4

e−Bτ
2
Hn

(√
Bτ
)
.

I Then spectrum of H is essential with eigenvalues of in�nite
multiplicity.
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Annular Shape of Window
I Modes method

ψk,m
I (r , θ, z) =

∞∑
n=1

cnR
m,n
I (r) e imθsin

(πn
d
z
)
,

ψk,m
II (r , θ, z) =

∞∑
n=1

(dnR
m,n
IIa (r) + enR

m,n
IIb (r)) e imθcos

(
π (2n − 1)

2d
z

)
,

ψk,m
II (r , θ, z) =

∞∑
n=1

gnR
m,n
III (r) e imθsin

(πn
d
z
)

I Matching in outer radius and inner radius

∞∑
n=1

cnsin
(πn
d
z
)

=
∞∑
n=1

(dn + en) cos

(
π (2n − 1)

2d
z

)
,

dj + ej =
∞∑
n=1

cn

(
cos

(
π (2j − 1)

2d
z

)
, sin

(πn
d
z
))

I Transfer to matrix equation M·~c = 0
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