Michele Zaccaron

Shape sensitivity analysis of a Maxwell's cavity problem

Student conference, Methods of Algebra and Functional Analysis In Applications Telč 18.05.2023

Based on joint work with P.D. Lamberti

Introduction

The time-harmonic Maxwell's equations in a cavity Ω of \mathbb{R}^{3} read as follows:

$$
\operatorname{curl} E=\mathrm{i} \omega \mu H, \quad \text { curl } H=-\mathrm{i} \omega \varepsilon E
$$ $\nu \times E=0, \quad \nu \cdot H=0$

Then curl μ^{-1} curl $E=\mathrm{i} \omega$ curl $H=-\mathrm{i}^{2} \omega^{2} \varepsilon E=\omega^{2} \varepsilon E$. Normalizing $\mu=\varepsilon=1$, we end up with the following eigenvalue problem

Introduction

The time-harmonic Maxwell's equations in a cavity Ω of \mathbb{R}^{3} read as follows:

$$
\operatorname{curl} E=\mathrm{i} \omega \mu H, \quad \text { curl } H=-\mathrm{i} \omega \varepsilon E
$$

$$
\nu \times E=0, \quad \nu \cdot H=0
$$

Then curl μ^{-1} curl $E=\mathrm{i} \omega$ curl $H=-\mathrm{i}^{2} \omega^{2} \varepsilon E=\omega^{2} \varepsilon E$. Normalizing $\mu=\varepsilon=1$, we end up with the following eigenvalue problem

Introduction

The time-harmonic Maxwell's equations in a cavity Ω of \mathbb{R}^{3} read as follows:

$$
\begin{array}{ll}
\operatorname{curl} E=\mathrm{i} \omega \mu H, & \text { curl } H=-\mathrm{i} \omega \varepsilon E \\
\nu \times E=0, & \nu \cdot H=0
\end{array}
$$

Then curl μ^{-1} curl $E=\mathrm{i} \omega \operatorname{curl} H=-\mathrm{i}^{2} \omega^{2} \varepsilon E=\omega^{2} \varepsilon E$. Normalizing $\mu=\varepsilon=1$, we end up with the following eigenvalue problem
$(\mathcal{M})\left\{\begin{array}{l}\text { curl curl } u=\lambda u \text { in } \Omega, \\ \operatorname{div} u=0 \text { in } \Omega, \\ \nu \times u=0 \text { on } \partial \Omega .\end{array}\right.$

Weak formulation

$$
(\mathcal{M})\left\{\begin{array}{l}
\text { curl curl } u=\lambda u \text { in } \Omega, \\
\operatorname{div} u=0 \text { in } \Omega, \\
\nu \times u=0 \quad \text { on } \partial \Omega .
\end{array}\right.
$$

Variational formulation: find $\lambda \geq 0$ and $u \in X$ such that

$$
\begin{equation*}
\int_{\Omega} \operatorname{curl} u \cdot \operatorname{curl} v d x=\lambda \int_{\Omega} u \cdot v d x \quad \forall v \in X \tag{M}
\end{equation*}
$$

Weak formulation

$$
(\mathcal{M})\left\{\begin{array}{l}
\text { curl curl } u=\lambda u \text { in } \Omega, \\
\operatorname{div} u=0 \text { in } \Omega, \\
\nu \times u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Variational formulation: find $\lambda \geq 0$ and $u \in X$ such that

$$
\begin{equation*}
\int_{\Omega} \operatorname{curl} u \cdot \operatorname{curl} v d x=\lambda \int_{\Omega} u \cdot v d x \quad \forall v \in X \tag{M}
\end{equation*}
$$

$$
\begin{aligned}
H(\text { curl }, \Omega) & =\left\{u \in L^{2}(\Omega)^{3}: \operatorname{curl} u \in L^{2}(\Omega)^{3}\right\} \\
H_{0}(\text { curl }, \Omega) & =\left\{u \in L^{2}(\Omega)^{3}: \operatorname{curl} u \in L^{2}(\Omega)^{3}, \nu \times\left. u\right|_{\partial \Omega}=0\right\}=\overline{\mathcal{C}_{c}^{\infty}(\Omega)^{3}}{ }^{H(\text { cur }, \Omega)} \\
X_{N}(\Omega) & =\left\{u \in L^{2}(\Omega)^{3}: \operatorname{curl} u, \operatorname{div} u \in L^{2}(\Omega), \nu \times\left. u\right|_{\partial \Omega}=0\right\} \overleftrightarrow{L^{2}}(\Omega)^{3} \\
X_{N}(\operatorname{div} 0, \Omega) & =\left\{u \in L^{2}(\Omega)^{3}: \operatorname{curl} u, \operatorname{div} u \in L^{2}(\Omega), \operatorname{div} u=0, \nu \times\left. u\right|_{\partial \Omega}=0\right\}
\end{aligned}
$$

A few first properties

The spectrum is discrete composed of eigenvalues of finite multiplicity

$$
0 \leq \lambda_{1}[\Omega] \leq \lambda_{2}[\Omega] \leq \cdots \leq \lambda_{j}[\Omega] \leq \cdots \nearrow+\infty
$$

and we have the standard min-max characterization

$$
\lambda_{j}[\Omega]=\min _{\substack{V \subset X_{N}(\Omega) \\ \operatorname{dim} V=j}} \max _{u \in V \backslash\{0\}} \frac{\int_{\Omega}|\operatorname{curl} u|^{2}+|\operatorname{div} u|^{2} d x}{\int_{\Omega}|u|^{2} d x} .
$$

The existence of the zero eigenvalues depends on topological properties of Ω. Indeed

$$
\begin{aligned}
K= & \left\{u \in L^{2}(\Omega)^{3}: \text { curl } u=0, \operatorname{div} u=0, \nu \times\left. u\right|_{\partial \Omega}=0\right\} \\
& \operatorname{dim} K=\# \text { c.c. of } \partial \Omega-1=\# \text { c.c.of } \mathbb{R}^{3} \backslash \bar{\Omega}
\end{aligned}
$$

A few first properties

The spectrum is discrete composed of eigenvalues of finite multiplicity

$$
0 \leq \lambda_{1}[\Omega] \leq \lambda_{2}[\Omega] \leq \cdots \leq \lambda_{j}[\Omega] \leq \cdots \nearrow+\infty
$$

and we have the standard min-max characterization

$$
\lambda_{j}[\Omega]=\min _{\substack{V \subset X_{N}(\Omega) \\ \operatorname{dim} V=j}} \max _{u \in V \backslash\{0\}} \frac{\int_{\Omega}|\operatorname{curl} u|^{2}+|\operatorname{div} u|^{2} d x}{\int_{\Omega}|u|^{2} d x}
$$

The existence of the zero eigenvalues depends on topological properties of Ω. Indeed

$$
\begin{aligned}
K= & \left\{u \in L^{2}(\Omega)^{3}: \operatorname{curl} u=0, \operatorname{div} u=0, \nu \times\left. u\right|_{\partial \Omega}=0\right\} \\
& \operatorname{dim} K=\# \text { c.c. of } \partial \Omega-1=\# \text { c.c.of } \mathbb{R}^{3} \backslash \bar{\Omega}
\end{aligned}
$$

A few first properties

The spectrum is discrete composed of eigenvalues of finite multiplicity

$$
0 \leq \lambda_{1}[\Omega] \leq \lambda_{2}[\Omega] \leq \cdots \leq \lambda_{j}[\Omega] \leq \cdots \nearrow+\infty
$$

and we have the standard min-max characterization

$$
\lambda_{j}[\Omega]=\min _{\substack{V \subset X_{N}(\Omega) \\ \operatorname{dim} V=j}} \max _{u \in V \backslash\{0\}} \frac{\int_{\Omega}|\operatorname{curl} u|^{2}+|\operatorname{div} u|^{2} d x}{\int_{\Omega}|u|^{2} d x} .
$$

The existence of the zero eigenvalues depends on topological properties of Ω. Indeed

$$
\begin{aligned}
K= & \left\{u \in L^{2}(\Omega)^{3}: \operatorname{curl} u=0, \operatorname{div} u=0, \nu \times\left. u\right|_{\partial \Omega}=0\right\} \\
& \operatorname{dim} K=\# \text { c.c. of } \partial \Omega-1=\# \text { c.c.of } \mathbb{R}^{3} \backslash \bar{\Omega}
\end{aligned}
$$

Question

What can we say about the behaviour of the eigenvalues $\lambda_{j}[\Omega]$ w.r.t. perturbations of the domain Ω ?

Product domains

If $\Omega=\omega \times I$ for some simply connected domain ω of \mathbb{R}^{2} and some finite interval $I \subset \mathbb{R}$. Then the Maxwell eigenvalues span the set

$$
\left\{d_{m}^{\omega}+\mu_{n}^{I}\right\}_{m \geq 1, n \geq 0} \cup\left\{\mu_{n}^{\omega}+d_{m}^{I}\right\}_{m \geq 1, n \geq 1}
$$

where

$$
\left\{\begin{array} { l l }
{ - \Delta v = d ^ { \omega } v , } & { \text { in } \omega } \\
{ v = 0 } & { \text { on } \partial \omega }
\end{array} \quad \left\{\begin{array}{ll}
-\Delta v=\mu^{\omega} v, & \text { in } \omega \\
\frac{\partial v}{\partial \nu}=0 & \text { on } \partial \omega
\end{array}\right.\right.
$$

and

$$
\left\{\begin{array} { l l }
{ - \Delta f = d ^ { I } f , } & { \text { in } I } \\
{ f = 0 } & { \text { on } \partial I }
\end{array} \quad \left\{\begin{array}{ll}
-\Delta f=\mu^{I} f, & \text { in } I \\
\frac{\partial f}{\partial \nu}=0 & \text { on } \partial I
\end{array}\right.\right.
$$

The appearance of the Neumann Laplacian eigenvalues prevents some properties for the Maxwell eigenvalues, such as stability...

Product domains

If $\Omega=\omega \times I$ for some simply connected domain ω of \mathbb{R}^{2} and some finite interval $I \subset \mathbb{R}$. Then the Maxwell eigenvalues span the set

$$
\left\{d_{m}^{\omega}+\mu_{n}^{I}\right\}_{m \geq 1, n \geq 0} \cup\left\{\mu_{n}^{\omega}+d_{m}^{I}\right\}_{m \geq 1, n \geq 1}
$$

where

$$
\left\{\begin{array} { l l }
{ - \Delta v = d ^ { \omega } v , } & { \text { in } \omega } \\
{ v = 0 } & { \text { on } \partial \omega }
\end{array} \quad \left\{\begin{array}{ll}
-\Delta v=\mu^{\omega} v, & \text { in } \omega \\
\frac{\partial v}{\partial \nu}=0 & \text { on } \partial \omega
\end{array}\right.\right.
$$

and

$$
\left\{\begin{array} { l l }
{ - \Delta f = d ^ { I } f , } & { \text { in } I } \\
{ f = 0 } & { \text { on } \partial I }
\end{array} \quad \left\{\begin{array}{ll}
-\Delta f=\mu^{I} f, & \text { in } I \\
\frac{\partial f}{\partial \nu}=0 & \text { on } \partial I
\end{array}\right.\right.
$$

The appearance of the Neumann Laplacian eigenvalues prevents some properties for the Maxwell eigenvalues, such as stability...
...or monotonicity:

$$
A \subseteq B \Longrightarrow d_{j}^{-\Delta, \mathfrak{D}}(A) \geq d_{j}^{-\Delta, \mathcal{D}}(B)
$$

The monotonicity principle does not hold for Neumann Laplacian, and neither for Maxwell. On a parallelepiped the first Maxwell eigenvalue coincide with the first (positive) Dirichlet Laplacian eigenvalue in \mathbb{R}^{2} of the largest face. That is, if $\Omega=\left(0, l_{1}\right) \times\left(0, l_{2}\right) \times\left(0, l_{3}\right)$ with $l_{1} \geq l_{2} \geq l_{3}$ then

$$
m_{1}^{\Omega}=\frac{\pi^{2}}{\ell_{1}^{2}}+\frac{\pi^{2}}{\ell_{2}^{2}}
$$

If we consider the halved parallelepiped $\widehat{\Omega}=\left(0, \ell_{1} / 2\right) \times\left(0, \ell_{2} / 2\right) \times\left(0, \ell_{3} / 2\right) \subset \Omega$ it is immediate to see that

$$
\hat{m}_{1}=4 m_{1}^{n}>m_{1}^{2}
$$

$$
\text { Since } \tilde{\ell}_{1}>\ell_{1} \text { and } \tilde{\ell}_{2}=\ell_{2} \text {, then }
$$

$$
\tilde{m}_{1}=\frac{\pi^{2}}{\tilde{\ell}_{1}^{2}}+\frac{\pi^{2}}{\ell_{2}^{2}}<m_{1}^{\Omega}
$$

$$
\text { Thus } \widehat{\Omega}, \widetilde{\Omega} \subset \Omega \text { but } \tilde{m}_{1}<m_{1}^{\Omega}<\hat{m}_{1}
$$

...or monotonicity:

$$
A \subseteq B \Longrightarrow d_{j}^{-\Delta, \mathscr{D}}(A) \geq d_{j}^{-\Delta, \mathscr{D}}(B)
$$

The monotonicity principle does not hold for Neumann Laplacian, and neither for Maxwell. On a parallelepiped the first Maxwell eigenvalue coincide with the first (positive) Dirichlet Laplacian eigenvalue in \mathbb{R}^{2} of the largest face. That is, if $\Omega=\left(0, \ell_{1}\right) \times\left(0, \ell_{2}\right) \times\left(0, \ell_{3}\right)$ with $\ell_{1} \geq \ell_{2} \geq \ell_{3}$ then

If we consider the halved parallelepiped $\widehat{\Omega}=\left(0, \ell_{1} / 2\right) \times\left(0, \ell_{2} / 2\right) \times\left(0, \ell_{3} / 2\right) \subset \Omega$ it is immediate to see that

$$
\hat{m}_{1}=4 m_{1}^{2}>m_{1}^{\Omega}
$$

Since $\tilde{\ell}_{1}>\ell_{1}$ and $\tilde{\ell}_{2}=\ell_{2}$, then

...or monotonicity:

$$
A \subseteq B \Longrightarrow d_{j}^{-\Delta, \mathscr{D}}(A) \geq d_{j}^{-\Delta, \mathscr{D}}(B)
$$

The monotonicity principle does not hold for Neumann Laplacian, and neither for Maxwell. On a parallelepiped the first Maxwell eigenvalue coincide with the first (positive) Dirichlet Laplacian eigenvalue in \mathbb{R}^{2} of the largest face. That is, if $\Omega=\left(0, \ell_{1}\right) \times\left(0, \ell_{2}\right) \times\left(0, \ell_{3}\right)$ with $\ell_{1} \geq \ell_{2} \geq \ell_{3}$ then

$$
m_{1}^{\Omega}=\frac{\pi^{2}}{\ell_{1}^{2}}+\frac{\pi^{2}}{\ell_{2}^{2}}
$$

If we consider the halved parallelepiped $\Omega=\left(0, \ell_{1} / 2\right) \times\left(0, \ell_{2} / 2\right) \times\left(0, \ell_{3} / 2\right) \subset \Omega$ it is immediate to see that

Since $\tilde{\ell}_{1}>\ell_{1}$ and $\tilde{\ell}_{2}=\ell_{2}$, then

...or monotonicity:

$$
A \subseteq B \Longrightarrow d_{j}^{-\Delta, \mathscr{D}}(A) \geq d_{j}^{-\Delta, \mathscr{D}}(B)
$$

The monotonicity principle does not hold for Neumann Laplacian, and neither for Maxwell. On a parallelepiped the first Maxwell eigenvalue coincide with the first (positive) Dirichlet Laplacian eigenvalue in \mathbb{R}^{2} of the largest face. That is, if $\Omega=\left(0, \ell_{1}\right) \times\left(0, \ell_{2}\right) \times\left(0, \ell_{3}\right)$ with $\ell_{1} \geq \ell_{2} \geq \ell_{3}$ then

$$
m_{1}^{\Omega}=\frac{\pi^{2}}{\ell_{1}^{2}}+\frac{\pi^{2}}{\ell_{2}^{2}}
$$

If we consider the halved parallelepiped $\widehat{\Omega}=\left(0, \ell_{1} / 2\right) \times\left(0, \ell_{2} / 2\right) \times\left(0, \ell_{3} / 2\right) \subset \Omega$ it is immediate to see that

$$
\hat{m}_{1}=4 m_{1}^{\Omega}>m_{1}^{\Omega}
$$

Since $\tilde{\ell}_{1}>\ell_{1}$ and $\tilde{\ell}_{2}=\ell_{2}$, then

...or monotonicity:

$$
A \subseteq B \Longrightarrow d_{j}^{-\Delta, \mathscr{D}}(A) \geq d_{j}^{-\Delta, \mathscr{D}}(B)
$$

The monotonicity principle does not hold for Neumann Laplacian, and neither for Maxwell. On a parallelepiped the first Maxwell eigenvalue coincide with the first (positive) Dirichlet Laplacian eigenvalue in \mathbb{R}^{2} of the largest face. That is, if $\Omega=\left(0, \ell_{1}\right) \times\left(0, \ell_{2}\right) \times\left(0, \ell_{3}\right)$ with $\ell_{1} \geq \ell_{2} \geq \ell_{3}$ then

$$
m_{1}^{\Omega}=\frac{\pi^{2}}{\ell_{1}^{2}}+\frac{\pi^{2}}{\ell_{2}^{2}}
$$

If we consider the halved parallelepiped $\widehat{\Omega}=\left(0, \ell_{1} / 2\right) \times\left(0, \ell_{2} / 2\right) \times\left(0, \ell_{3} / 2\right) \subset \Omega$ it is immediate to see that

$$
\hat{m}_{1}=4 m_{1}^{\Omega}>m_{1}^{\Omega}
$$

Since $\tilde{\ell}_{1}>\ell_{1}$ and $\tilde{\ell}_{2}=\ell_{2}$, then

$$
\tilde{m}_{1}=\frac{\pi^{2}}{\tilde{\ell}_{1}^{2}}+\frac{\pi^{2}}{\ell_{2}^{2}}<m_{1}^{\Omega}
$$

...or monotonicity:

$$
A \subseteq B \Longrightarrow d_{j}^{-\Delta, \mathscr{D}}(A) \geq d_{j}^{-\Delta, \mathscr{D}}(B)
$$

The monotonicity principle does not hold for Neumann Laplacian, and neither for Maxwell. On a parallelepiped the first Maxwell eigenvalue coincide with the first (positive) Dirichlet Laplacian eigenvalue in \mathbb{R}^{2} of the largest face. That is, if $\Omega=\left(0, \ell_{1}\right) \times\left(0, \ell_{2}\right) \times\left(0, \ell_{3}\right)$ with $\ell_{1} \geq \ell_{2} \geq \ell_{3}$ then

$$
m_{1}^{\Omega}=\frac{\pi^{2}}{\ell_{1}^{2}}+\frac{\pi^{2}}{\ell_{2}^{2}}
$$

If we consider the halved parallelepiped $\widehat{\Omega}=\left(0, \ell_{1} / 2\right) \times\left(0, \ell_{2} / 2\right) \times\left(0, \ell_{3} / 2\right) \subset \Omega$ it is immediate to see that

$$
\hat{m}_{1}=4 m_{1}^{\Omega}>m_{1}^{\Omega}
$$

Since $\tilde{\ell}_{1}>\ell_{1}$ and $\tilde{\ell}_{2}=\ell_{2}$, then

$$
\tilde{m}_{1}=\frac{\pi^{2}}{\tilde{\ell}_{1}^{2}}+\frac{\pi^{2}}{\ell_{2}^{2}}<m_{1}^{\Omega}
$$

Thus $\widehat{\Omega}, \widetilde{\Omega} \subset \Omega$ but $\tilde{m}_{1}<m_{1}^{\Omega}<\hat{m}_{1}$

Short history

Question

What can we say about the behaviour of the eigenvalues $\lambda_{j}[\Omega]$ w.r.t. perturbations of the domain Ω ? In particular, can we provide a formula for the shape derivative?

- Hadamard variation: in the beginning of last century the work of Hadamard ${ }^{1}$ on shape variations for the Dirichlet Laplacian.
- The same Maxwell problem is considered in Jimbo ${ }^{2}$: uni-parametric perturbations, simple eigenvalues.
- Our shape derivative formula coincides with the one found in "Electromechanics" (Denki Rikigaku - Hirakawa '73) It is of "different type" from Jimbo's.

[^0]
Short history

Question
 What can we say about the behaviour of the eigenvalues $\lambda_{j}[\Omega]$ w.r.t. perturbations of the domain Ω ? In particular, can we provide a formula for the shape derivative?

- Hadamard variation: in the beginning of last century the work of Hadamard ${ }^{1}$ on shape variations for the Dirichlet Laplacian.
- The same Maxwell problem is considered in Jimbo ${ }^{2}$: uni-parametric perturbations, simple eigenvalues. Our shape derivative formula coincicles with the one found in "Electromechanics" (Denki Rikigaku - Hirakawa '73)
${ }^{1}$ [Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées (1908) [Hadamard variation for electromagnetic frequencies (2013)]

Short history

Question
 What can we say about the behaviour of the eigenvalues $\lambda_{j}[\Omega]$ w.r.t. perturbations of the domain Ω ? In particular, can we provide a formula for the shape derivative?

- Hadamard variation: in the beginning of last century the work of Hadamard ${ }^{1}$ on shape variations for the Dirichlet Laplacian.
- The same Maxwell problem is considered in Jimbo ${ }^{2}$: uni-parametric perturbations, simple eigenvalues.

${ }^{1}$ [Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées (1908) ${ }^{2}$ [Hadamard variation for electromagnetic frequencies (2013)]

Short history

Question

What can we say about the behaviour of the eigenvalues $\lambda_{j}[\Omega]$ w．r．t． perturbations of the domain Ω ？In particular，can we provide a formula for the shape derivative？

－Hadamard variation：in the beginning of last century the work of Hadamard ${ }^{1}$ on shape variations for the Dirichlet Laplacian．
－The same Maxwell problem is considered in Jimbo ${ }^{2}$ ：uni－parametric perturbations，simple eigenvalues．
－Our shape derivative formula coincides with the one found in
＂Electromechanics＂（Denki Rikigaku－Hirakawa＇73）

$$
\begin{align*}
& \text { としてあよい。そとで } \\
& \qquad \frac{\omega^{2}-\omega_{m}^{2}}{\omega_{m}^{2}}=-\frac{\iint\left(\varepsilon\left|\mathbf{E}_{m}\right|^{2}-\mu\left|\mathbf{H}_{m}\right|^{2}\right) \delta n d S}{\varepsilon \iiint_{\mathrm{V}}\left|\mathbf{E}_{m}\right|^{2} d V} \tag{4-88}
\end{align*}
$$

が得られる。ただし（4－87）の右辺の秤価そおいて S と S^{\prime} の聞が十分に近
It is of＂different type＂from Jimbo＇s．
${ }^{1}$［Mémoire sur le problème d＇analyse relatif à l＇équilibre des plaques élastiques encastrées（1908） ${ }^{2}$［Hadamard variation for electromagnetic frequencies（2013）］

Shape perturbation

Fix a domain $\Omega \subset \mathbb{R}^{3}$ and consider a class of diffeomorpshims Φ on Ω.

We consider the eigenvalue problem on $\Phi(\Omega)$. Its spectrum is

$$
0 \leq \lambda_{1}[\Phi] \leq \lambda_{2}[\Phi] \leq \cdots \leq \lambda_{j}[\Phi] \leq \cdots \nearrow+\infty
$$

The general idea is to get information about minimization/maximization of eigenvalues, under some physically or mathematically reasonable constraints. For example, we are interested in extremum problems of this type

Shape perturbation

Fix a domain $\Omega \subset \mathbb{R}^{3}$ and consider a class of diffeomorpshims Φ on Ω.

We consider the eigenvalue problem on $\Phi(\Omega)$. Its spectrum is

$$
0 \leq \lambda_{1}[\Phi] \leq \lambda_{2}[\Phi] \leq \cdots \leq \lambda_{j}[\Phi] \leq \cdots \nearrow+\infty
$$

The general idea is to get information about minimization/maximization of eigenvalues, under some physically or mathematically reasonable constraints. For example, we are interested in extremum problems of this type

$$
\begin{aligned}
& \min _{\operatorname{Vol}[\Phi(\Omega)]=\text { const. }} \lambda_{j}[\Phi] \quad \text { or } \quad \max _{\operatorname{Vol}[\Phi(\Omega)]=\text { const. }} \lambda_{j}[\Phi] \\
& \min _{\operatorname{Per}[\Phi(\Omega)]=\text { const. }} \lambda_{j}[\Phi] \quad \text { or } \quad \max _{\operatorname{Per}[\Phi(\Omega)]=\text { const. }} \lambda_{j}[\Phi]
\end{aligned}
$$

Shape perturbation

Case: the eigenvalue is simple, and we are in a particular one-parametric case where the variation acts on the boundary of Ω as follows ($\rho \in C^{1}(\partial \Omega)$)

$$
\partial \Omega_{\epsilon}=\left\{\xi+\epsilon \rho(\xi) \nu(\xi) \in \mathbb{R}^{3}: \xi \in \partial \Omega\right\}
$$

Shape sensitivity analysis for electromagnetic cavities
${ }^{3}$ [A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Dirichlet problem for the Laplace operator]

Shape perturbation

Case: the eigenvalue is simple, and we are in a particular one-parametric case where the variation acts on the boundary of Ω as follows ($\rho \in C^{1}(\partial \Omega)$)

$$
\partial \Omega_{\epsilon}=\left\{\xi+\epsilon \rho(\xi) \nu(\xi) \in \mathbb{R}^{3}: \xi \in \partial \Omega\right\}
$$

Theorem (Lamberti, Z.)

i) The map $\Phi \mapsto \lambda_{j}[\Phi]$ is real-analytic;

Shape sensitivity analysis for electromagnetic cavities
${ }^{3}$ [A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Dirichlet problem for the Laplace operator]

Shape perturbation

Case: the eigenvalue is simple, and we are in a particular one-parametric case where the variation acts on the boundary of Ω as follows ($\rho \in C^{1}(\partial \Omega)$)

$$
\partial \Omega_{\epsilon}=\left\{\xi+\epsilon \rho(\xi) \nu(\xi) \in \mathbb{R}^{3}: \xi \in \partial \Omega\right\} .
$$

Theorem (Lamberti, Z.)

i) The map $\Phi \mapsto \lambda_{j}[\Phi]$ is real-analytic;
ii) Hadamard formula:

$$
\left.\frac{d \lambda_{j}(\epsilon)}{d \epsilon}\right|_{\epsilon=0}=\int_{\partial \Omega}\left(\lambda_{k}(0)\left|u^{(j)}\right|^{2}-\left|\operatorname{curl} u^{(j)}\right|^{2}\right) \rho d \sigma
$$

where $u^{(j)}$ is the eigenvector associated to $\lambda_{j}(0)$ normalized in $L^{2}(\Omega)^{3}$.
Shape sensitivity analysis for electromagnetic cavities
${ }^{3}$ [A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Dirichlet problem for the Laplace operator]

Comparing formulas

- Hirakawa 1973 (magnetic field $H=-\mathrm{i} \mu^{-1} \varepsilon$ curl $E / \sqrt{\lambda}$)

$$
\frac{\lambda-\lambda(0)}{\lambda(0)}=\frac{\iint\left(\varepsilon|E|^{2}-\mu|H|^{2}\right) \delta n d S}{\varepsilon \iiint|E|^{2} d V}
$$

- Jimbo $2013(K(x)$ is the Gaussian curvature at $x \in \partial \Omega)$

$$
\begin{aligned}
\left.\frac{d \lambda(\epsilon)}{d \epsilon}\right|_{\epsilon=0}= & \int_{\partial \Omega}\left(|D E|^{2}-2\left|\frac{\partial E}{\partial \nu}\right|^{2}+2(K(x)-\lambda(0))|E|^{2}\right) \rho d \sigma \\
& +2 \int_{\partial \Omega}(E \cdot \nu)\left(\operatorname{curl} E \times \nabla_{\ulcorner } \rho\right) \cdot \nu d \sigma
\end{aligned}
$$

- Lamberti, Z. 2020

$$
\left.\frac{d \lambda(\epsilon)}{d \epsilon}\right|_{\epsilon=0}=\int_{\partial \Omega}\left(\lambda(0) \varepsilon E \cdot E-\mu^{-1} \operatorname{curl} E \cdot \operatorname{curl} E\right) \rho d \sigma
$$

Corollaries

i) Rellich-Pohozaev identity (λ can be multiple):

$$
\lambda=\frac{1}{2} \int_{\partial \Omega}\left(|\operatorname{curl} u|^{2}-\lambda|u|^{2}\right)(x \cdot \nu) d \sigma
$$

ii) Characterization of critical shapes for the (elementary symmetric functions of the) eigenvalues w.r.t. isovolumetric and isoperimetric perturbations. Let Ω a C^{2} bounded domain of \mathbb{R}^{3} such that $\lambda_{j}[\Omega]$ is simple, and denote with $u^{(j)}$ its associated (normalized) eigenfield. Then
where \mathcal{H} is the mean curvature. Balls are critical shapes for both isovolumetric and isoperimetric constraints.
They are not the "correct" constraints for Maxwell problems.

Corollaries

i) Rellich-Pohozaev identity (λ can be multiple):

$$
\lambda=\frac{1}{2} \int_{\partial \Omega}\left(|\operatorname{curl} u|^{2}-\lambda|u|^{2}\right)(x \cdot \nu) d \sigma
$$

ii) Characterization of critical shapes for the (elementary symmetric functions of the) eigenvalues w.r.t. isovolumetric and isoperimetric perturbations. Let Ω a C^{2} bounded domain of \mathbb{R}^{3} such that $\lambda_{j}[\Omega]$ is simple, and denote with $u^{(j)}$ its associated (normalized) eigenfield. Then
fixed volume

$$
\lambda_{j}[\Omega]\left|u^{(j)}\right|^{2}-\left|\operatorname{curl} u^{(j)}\right|^{2}=\text { const }
$$

fixed perimeter

$$
\lambda_{j}[\Omega]\left|u^{(j)}\right|^{2}-\left|\operatorname{curl} u^{(j)}\right|^{2}=\text { const } \cdot \mathcal{H}
$$

$$
\text { on } \partial \Omega
$$

where \mathcal{H} is the mean curvature. Balls are critical shapes for both isovolumetric and isoperimetric constraints.

Corollaries

i) Rellich-Pohozaev identity (λ can be multiple):

$$
\lambda=\frac{1}{2} \int_{\partial \Omega}\left(|\operatorname{curl} u|^{2}-\lambda|u|^{2}\right)(x \cdot \nu) d \sigma
$$

ii) Characterization of critical shapes for the (elementary symmetric functions of the) eigenvalues w.r.t. isovolumetric and isoperimetric perturbations. Let Ω a C^{2} bounded domain of \mathbb{R}^{3} such that $\lambda_{j}[\Omega]$ is simple, and denote with $u^{(j)}$ its associated (normalized) eigenfield. Then
fixed volume

$$
\begin{array}{rll}
\text { fixed volume } & \lambda_{j}[\Omega]\left|u^{(j)}\right|^{2}-\left|\operatorname{curl} u^{(j)}\right|^{2}=\text { const } & \text { on } \partial \Omega \\
\text { fixed perimeter } & \lambda_{j}[\Omega]\left|u^{(j)}\right|^{2}-\left|\operatorname{curl} u^{(j)}\right|^{2}=\text { const } \cdot \mathcal{H} & \text { on } \partial \Omega
\end{array}
$$

where \mathcal{H} is the mean curvature. Balls are critical shapes for both isovolumetric and isoperimetric constraints.
They are not the "correct" constraints for Maxwell problems.

Some open problems

- What is the correct type of constraints for Maxwell?
- General (and difficult): optimal shapes for the Maxwell eigenvalues.
- Second shape derivative.

Some open problems

- What is the correct type of constraints for Maxwell?
- General (and difficult): optimal shapes for the Maxwell eigenvalues.
- Second shape derivative.

Some open problems

- What is the correct type of constraints for Maxwell?
- General (and difficult): optimal shapes for the Maxwell eigenvalues.
- Second shape derivative.

Thanks for your attention!

Costabel M., Dauge M., Maxwell and Lamé eigenvalues on polyhedra. Math. Methods Appl. Sci. 22 (1999), no. 3, 243-258.

Hadamard J.: Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées. Memoires des Savants Etrangers, vol. 33 (1908)

Hirakawa K., Denki Rikigaku. Baifukan, Tokyo (1973) (in Japanese)
Jimbo S., Hadamard variation for electromagnetic frequencies. Geometric properties for parabolic and elliptic PDE's, 179-199, Springer INdAM Ser., 2, Springer, Milan, 2013.

Lamberti, P.D., Lanza M., A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Dirichlet problem for the Laplace operator. J. Nonlinear Convex Anal. 5 (2004), no. 1, 19-42
P.D. Lamberti, M. Zaccaron, Shape sensitivity analysis for electromagnetic cavities. Math. Methods Appl. Sci., 44(13):10477-10500, 2021.
P.D. Lamberti, M. Zaccaron, Spectral stability of the curl curl operator via uniform Gaffney inequalities on perturbed electromagnetic cavities. Mathematics in Engineering (2023), Vol. 5 Issue 1, pp. 1-31.
P. Luzzini, M. Zaccaron, A few results on permittivity variations in electromagnetic cavities. J.

Differential Equations 334 (2022), 342-367.
H. Weyl, Über das Spectrum der Hohlraumstrahlung. J. Reine Angew. Math. 141 (1912), 163-181.

Shape perturbation

Problem

If we have a multiple eigenvalue, a perturbation of the domain may split its multiplicity, causing angular bifurcation phenomena. The best we can obtain is Lipschitz continuity.

Bifurcations

This problem can be overcome when dealing with uni-parametric families of perturbations $\left\{\Omega_{\epsilon}\right\}_{\epsilon>0}$ of Ω. But even when we have only two parameters Example:

$$
A(t, r)=\left(\begin{array}{cc}
t & r \\
r & -t
\end{array}\right) \quad \begin{array}{ll}
\lambda_{1}[t, r]=\sqrt{t^{2}+r^{2}} \\
& \lambda_{2}[t, r]=-\sqrt{t^{2}+r^{2}}
\end{array}
$$

At the point $(t, r)=(0,0)$ the eigenvalues are NOT differentiable.

\square
\square

Bifurcations

This problem can be overcome when dealing with uni-parametric families of perturbations $\left\{\Omega_{\epsilon}\right\}_{\epsilon>0}$ of Ω. But even when we have only two parameters Example:

$$
A(t, r)=\left(\begin{array}{cc}
t & r \\
r & -t
\end{array}\right) \quad \begin{array}{ll}
\lambda_{1}[t, r]=\sqrt{t^{2}+r^{2}} \\
& \lambda_{2}[t, r]=-\sqrt{t^{2}+r^{2}}
\end{array}
$$

At the point $(t, r)=(0,0)$ the eigenvalues are NOT differentiable.

Bifurcations

This problem can be overcome when dealing with uni-parametric families of perturbations $\left\{\Omega_{\epsilon}\right\}_{\epsilon>0}$ of Ω. But even when we have only two parameters Example:

$$
A(t, r)=\left(\begin{array}{cc}
t & r \\
r & -t
\end{array}\right) \quad \begin{array}{ll}
\lambda_{1}[t, r]=\sqrt{t^{2}+r^{2}} \\
& \lambda_{2}[t, r]=-\sqrt{t^{2}+r^{2}}
\end{array}
$$

At the point $(t, r)=(0,0)$ the eigenvalues are NOT differentiable.

The symmetric functions of the eigenvalues are differentiable.

$$
\begin{aligned}
& \lambda_{1}[t, r]+\lambda_{2}[t, r]=0 \\
& \lambda_{1}[t, r] \lambda_{2}[t, r]=-t^{2}-r^{2}
\end{aligned}
$$

They are even analytic!

Shape perturbation

Idea: In the same spirit of Lamberti\&Lanza ${ }^{3}$ '04, we consider the elementary symmetric functions of the eigenvalues. Let F be a finite subset of \mathbb{N} and let $s \in\{1, \ldots,|F|\}$. Then

$$
\Lambda_{F, s}[\Phi]:=\sum_{\substack{j_{1}, \ldots, j_{s} \in F \\ j_{1}<\cdots<j_{s}}} \lambda_{j_{1}}[\Phi] \cdots \lambda_{j_{s}}[\Phi]
$$

Theorem (Lamberti, Z.)
i) The map $\Phi \mapsto \Lambda_{F, s}[\Phi]$ is real-analytic;

Shape sensitivity analysis for electromagnetic cavities
${ }^{3}$ [A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Dirichlet problem for the Laplace operator]

Shape perturbation

Idea: In the same spirit of Lamberti\&Lanza ${ }^{3}$ '04, we consider the elementary symmetric functions of the eigenvalues. Let F be a finite subset of \mathbb{N} and let $s \in\{1, \ldots,|F|\}$. Then

$$
\Lambda_{F, s}[\Phi]:=\sum_{\substack{j_{1}, \ldots, j_{s} \in F \\ j_{1}<\cdots<j_{s}}} \lambda_{j_{1}}[\Phi] \cdots \lambda_{j_{s}}[\Phi]
$$

Theorem (Lamberti, Z.)

i) The map $\Phi \mapsto \Lambda_{F, s}[\Phi]$ is real-analytic;
ii) Hadamard formula: simple eigenvalue and in the one-parametric case where the variation acts on the boundary of Ω as follows ($\rho \in C^{1}(\partial \Omega)$)

$$
\begin{aligned}
\partial \Omega_{\epsilon} & =\left\{\xi+\epsilon \rho(\xi) \nu(\xi) \in \mathbb{R}^{3}: \xi \in \partial \Omega\right\}, \\
\left.\frac{d \lambda_{k}(\epsilon)}{d \epsilon}\right|_{\epsilon=0} & =\int_{\partial \Omega}\left(\lambda_{k}(0)\left|u^{(k)}\right|^{2}-\left|\operatorname{curl} u^{(k)}\right|^{2}\right) \rho d \sigma
\end{aligned}
$$

where $u^{(k)}$ is the eigenvector of λ_{k} normalized in $L^{2}(\Omega)^{3}$.
Shape sensitivity analysis for electromagnetic cavities
${ }^{3}$ [A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Dirichlet problem for the Laplace operator]

Gaffney-Friedrichs inequality

Recall $X_{N}(\Omega)=\left\{u \in L^{2}(\Omega)\right.$: curl u, div $u \in L^{2}(\Omega), \nu \times u=0$ on $\left.\partial \Omega\right\}$ Gaffney inclusion: $X_{N}(\Omega) \subset H^{1}(\Omega)^{3}$.
Gaffney inequality: for all $u \in X_{N}(\Omega)$

$$
\|D u\|_{L^{2}(\Omega)^{3 \times 3}}^{2} \leq C\left(\|\operatorname{div} u\|_{L^{2}(\Omega)}^{2}+\|\operatorname{curl} u\|_{L^{2}(\Omega)^{3}}^{2}+\|u\|_{L^{2}(\Omega)^{3}}^{2}\right)
$$

If Ω is at least Lipschitz

M. Sh. Birman and M. Z. Solomyak. The Maxwell operator in domains with a nonsmooth boundary. ' 87

Gaffney-Friedrichs inequality

Recall $X_{N}(\Omega)=\left\{u \in L^{2}(\Omega)\right.$: curl u, $\operatorname{div} u \in L^{2}(\Omega), \nu \times u=0$ on $\left.\partial \Omega\right\}$ Gaffney inclusion: $X_{N}(\Omega) \subset H^{1}(\Omega)^{3}$.
Gaffney inequality: for all $u \in X_{N}(\Omega)$

$$
\|D u\|_{L^{2}(\Omega)^{3 \times 3}}^{2} \leq C\left(\|\operatorname{div} u\|_{L^{2}(\Omega)}^{2}+\|\operatorname{curl} u\|_{L^{2}(\Omega)^{3}}^{2}+\|u\|_{L^{2}(\Omega)^{3}}^{2}\right)
$$

Dirichlet Laplacian: $\quad \begin{cases}-\Delta \varphi=f, & \text { in } \Omega, \\ \varphi=0, & \text { on } \partial \Omega,\end{cases}$
If Ω is at least Lipschitz

Gaffney inclusion

$\Longleftrightarrow \quad H^{2}$-regularity for the Dirichlet Laplacian
M. Sh. Birman and M. Z. Solomyak. The Maxwell operator in domains with a nonsmooth boundary. '87

Gaffney-Friedrichs inequality

Recall $X_{N}(\Omega)=\left\{u \in L^{2}(\Omega)\right.$: curl u, div $u \in L^{2}(\Omega), \nu \times u=0$ on $\left.\partial \Omega\right\}$ Gaffney inclusion: $X_{N}(\Omega) \subset H^{1}(\Omega)^{3}$.
Gaffney inequality: for all $u \in X_{N}(\Omega)$

$$
\|D u\|_{L^{2}(\Omega)^{3 \times 3}}^{2} \leq C\left(\|\operatorname{div} u\|_{L^{2}(\Omega)}^{2}+\|\operatorname{curl} u\|_{L^{2}(\Omega)^{3}}^{2}+\|u\|_{L^{2}(\Omega)^{3}}^{2}\right)
$$

Dirichlet Laplacian: $\quad \begin{cases}-\Delta \varphi=f, & \text { in } \Omega, \\ \varphi=0, & \text { on } \partial \Omega,\end{cases}$
If Ω is at least Lipschitz

```
Gaffney inequality
H2
```

M. Sh. Birman and M. Z. Solomyak. The Maxwell operator in domains with a nonsmooth boundary. '87

Weyl Iaw

In fact, it was Weyl ${ }^{6}$ himself the first to obtain it for Maxwell

$$
N_{\mathscr{M}}(\lambda) \sim \frac{|\Omega|}{3 \pi^{2}} \lambda^{3 / 2}
$$

Dirichlet/Neumann Laplacian in \mathbb{R}^{3}

$$
N_{\mathcal{L}_{\mathscr{D}, \mathfrak{N}}}(\lambda) \sim \frac{|\Omega|}{2 \cdot 3 \pi^{2}} \lambda^{3 / 2}
$$

Pólya conjectured in 1961 that the Weyl estimate of large eigenvalues should be a strict lower bound for each of the Dirichlet eigenvalues of a domain, and an upper bound for the Neumann eigenvalues.
Berezin, Li-Yau proved an averaged version of the conjecture for Dirichlet:

$$
\frac{1}{k} \sum_{j=1}^{k} d_{j} \geq \frac{3}{5}\left(2 \cdot 3 \pi^{2}\right) 2 / 3 \frac{k}{|\Omega|}^{2 / 3}
$$

Kröger for Neumann

$$
\frac{1}{k} \sum_{j=1}^{k} \mu_{j} \leq \frac{3}{5}\left(2 \cdot 3 \pi^{2}\right) 2 / 3 \frac{k}{|\Omega|}^{2 / 3}
$$

[^1]
[^0]: ${ }^{1}$ [Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées (1908) ${ }^{2}$ [Hadamard variation for electromagnetic frequencies (2013)]

[^1]: ${ }^{6}$ [Über das Spectrum der Hohlraumstrahlung (1912)]

