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Introduction

The time-harmonic Maxwell’s equations in a cavity Ω of R3 read as follows:

curl E = i ωµH, curl H = −i ωεE
ν × E = 0, ν · H = 0

H⃗

E⃗

Then curl µ−1 curl E = i ω curl H = −i2ω2εE = ω2εE . Normalizing µ = ε = 1, we
end up with the following eigenvalue problem

(M )


curl curl u = λu in Ω,

div u = 0 in Ω,

ν × u = 0 on ∂Ω.
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Weak formulation

(M )


curl curl u = λu in Ω,

div u = 0 in Ω,

ν × u = 0 on ∂Ω.

Variational formulation: find λ ≥ 0 and u ∈ X such that

(M )
∫

Ω
curl u · curl v dx = λ

∫
Ω

u · v dx ∀v ∈ X

H(curl, Ω) = {u ∈ L2(Ω)3 : curl u ∈ L2(Ω)3}

H0(curl, Ω) = {u ∈ L2(Ω)3 : curl u ∈ L2(Ω)3, ν × u|∂Ω = 0} = C ∞
c (Ω)3H(curl,Ω)

XN(Ω) = {u ∈ L2(Ω)3 : curl u, div u ∈ L2(Ω), ν × u|∂Ω = 0} ↪→
↪→ L2(Ω)3

XN(div 0, Ω) = {u ∈ L2(Ω)3 : curl u, div u ∈ L2(Ω), div u = 0, ν × u|∂Ω = 0}
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A few first properties
The spectrum is discrete composed of eigenvalues of finite multiplicity

0 ≤ λ1[Ω] ≤ λ2[Ω] ≤ · · · ≤ λj [Ω] ≤ · · · ↗ +∞

and we have the standard min-max characterization

λj [Ω] = min
V ⊂XN (Ω)
dimV =j

max
u∈V \{0}

∫
Ω | curl u|2 + | div u|2dx∫

Ω |u|2 dx
.

The existence of the zero eigenvalues depends on topological properties of Ω.
Indeed

K = {u ∈ L2(Ω)3 : curl u = 0, div u = 0, ν × u|∂Ω = 0}

dim K = #c.c. of ∂Ω − 1 = #c.c.of R3 \ Ω

Question
What can we say about the behaviour of the eigenvalues λj [Ω] w.r.t.
perturbations of the domain Ω?
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Product domains

If Ω = ω × I for some simply connected domain ω of R2 and some finite interval
I ⊂ R. Then the Maxwell eigenvalues span the set

{d ω
m + µI

n}m≥1,n≥0 ∪ {µω
n + d I

m}m≥1,n≥1

where {
−∆v = d ωv , in ω

v = 0 on ∂ω

{
−∆v = µωv , in ω
∂v
∂ν = 0 on ∂ω

and {
−∆f = d I f , in I
f = 0 on ∂I

{
−∆f = µI f , in I
∂f
∂ν = 0 on ∂I

The appearance of the Neumann Laplacian eigenvalues prevents some properties
for the Maxwell eigenvalues, such as stability...
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...or monotonicity:
A ⊆ B =⇒ d −∆,D

j (A) ≥ d −∆,D
j (B)

The monotonicity principle does not hold for Neumann Laplacian, and neither for
Maxwell. On a parallelepiped the first Maxwell eigenvalue coincide with the first
(positive) Dirichlet Laplacian eigenvalue in R2 of the largest face. That is, if
Ω = (0, ℓ1) × (0, ℓ2) × (0, ℓ3) with ℓ1 ≥ ℓ2 ≥ ℓ3 then

mΩ
1 = π2

ℓ2
1

+ π2

ℓ2
2

If we consider the halved parallelepiped Ω̂ = (0, ℓ1/2) × (0, ℓ2/2) × (0, ℓ3/2) ⊂ Ω
it is immediate to see that

m̂1 = 4mΩ
1 > mΩ

1

Since ℓ̃1 > ℓ1 and ℓ̃2 = ℓ2, then

m̃1 = π2

ℓ̃2
1

+ π2

ℓ2
2

< mΩ
1

Thus Ω̂, Ω̃ ⊂ Ω but m̃1 < mΩ
1 < m̂1
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Short history
Question
What can we say about the behaviour of the eigenvalues λj [Ω] w.r.t.
perturbations of the domain Ω? In particular, can we provide a formula for the
shape derivative?

• Hadamard variation: in the beginning of last century the work of Hadamard1

on shape variations for the Dirichlet Laplacian.
• The same Maxwell problem is considered in Jimbo 2: uni-parametric

perturbations, simple eigenvalues.
• Our shape derivative formula coincides with the one found in

“Electromechanics” (Denki Rikigaku - Hirakawa ’73)

It is of “different type” from Jimbo’s.
1[Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées (1908)]
2[Hadamard variation for electromagnetic frequencies (2013)]
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Shape perturbation
Fix a domain Ω ⊂ R3 and consider a class of diffeomorpshims Φ on Ω.

We consider the eigenvalue problem on Φ(Ω). Its spectrum is

0 ≤ λ1[Φ] ≤ λ2[Φ] ≤ · · · ≤ λj [Φ] ≤ · · · ↗ +∞

The general idea is to get information about minimization/maximization of
eigenvalues, under some physically or mathematically reasonable constraints. For
example, we are interested in extremum problems of this type

min
Vol[Φ(Ω)]=const.

λj [Φ] or max
Vol[Φ(Ω)]=const.

λj [Φ]

min
Per[Φ(Ω)]=const.

λj [Φ] or max
Per[Φ(Ω)]=const.

λj [Φ]
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Shape perturbation
Case: the eigenvalue is simple, and we are in a particular one-parametric case
where the variation acts on the boundary of Ω as follows (ρ ∈ C1(∂Ω))

∂Ωϵ = {ξ + ϵρ(ξ)ν(ξ) ∈ R3 : ξ ∈ ∂Ω}.

Theorem (Lamberti, Z.)
i) The map Φ 7→ λj [Φ] is real-analytic;
ii) Hadamard formula:

dλj(ϵ)
dϵ

∣∣∣∣
ϵ=0

=
∫

∂Ω

(
λk(0)

∣∣u(j)∣∣2 −
∣∣ curl u(j)∣∣2) ρ dσ

where u(j) is the eigenvector associated to λj(0) normalized in L2(Ω)3.

Shape sensitivity analysis for electromagnetic cavities

3[A real analyticity result for symmetric functions of the eigenvalues of a domain dependent
Dirichlet problem for the Laplace operator]
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Comparing formulas
▶ Hirakawa 1973 ( magnetic field H = −iµ−1ε curl E/

√
λ)

λ − λ(0)
λ(0) =

∫ ∫
(ε|E |2 − µ|H|2)δn dS

ε
∫ ∫ ∫

|E |2dV

▶ Jimbo 2013 (K (x) is the Gaussian curvature at x ∈ ∂Ω)

dλ(ϵ)
dϵ

∣∣∣∣
ϵ=0

=
∫

∂Ω

(
|DE |2 − 2

∣∣∣∣∂E
∂ν

∣∣∣∣2 + 2 (K (x) − λ(0)) |E |2
)

ρ dσ

+ 2
∫

∂Ω
(E · ν)(curl E × ∇Γρ) · ν dσ

▶ Lamberti, Z. 2020

dλ(ϵ)
dϵ

∣∣∣∣
ϵ=0

=
∫

∂Ω

(
λ(0) εE · E − µ−1 curl E · curl E

)
ρ dσ

9 / 12



Corollaries

i) Rellich-Pohozaev identity (λ can be multiple):

λ = 1
2

∫
∂Ω

(
| curl u|2 − λ|u|2

)
(x · ν) dσ

ii) Characterization of critical shapes for the (elementary symmetric functions
of the) eigenvalues w.r.t. isovolumetric and isoperimetric perturbations. Let
Ω a C2 bounded domain of R3 such that λj [Ω] is simple, and denote with
u(j) its associated (normalized) eigenfield. Then

fixed volume λj [Ω] |u(j)|2 − | curl u(j)|2 = const on ∂Ω
fixed perimeter λj [Ω] |u(j)|2 − | curl u(j)|2 = const · H on ∂Ω

where H is the mean curvature. Balls are critical shapes for both
isovolumetric and isoperimetric constraints.
They are not the “correct” constraints for Maxwell problems.
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Some open problems

▶ What is the correct type of constraints for Maxwell?

▶ General (and difficult): optimal shapes for the Maxwell eigenvalues.

▶ Second shape derivative.
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Thanks for your attention!
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Shape perturbation
Problem
If we have a multiple eigenvalue, a perturbation of the domain may split its
multiplicity, causing angular bifurcation phenomena. The best we can obtain is
Lipschitz continuity.



Bifurcations
This problem can be overcome when dealing with uni-parametric families of
perturbations {Ωϵ}ϵ>0 of Ω. But even when we have only two parameters
Example:

A(t, r) =
(

t r
r −t

) λ1[t, r ] =
√

t2 + r2

λ2[t, r ] = −
√

t2 + r2

At the point (t, r) = (0, 0) the eigenvalues are NOT differentiable.

The symmetric functions of the
eigenvalues are differentiable.

λ1[t, r ] + λ2[t, r ] = 0

λ1[t, r ]λ2[t, r ] = −t2 − r2

They are even analytic!
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Shape perturbation
Idea: In the same spirit of Lamberti&Lanza3 ’04, we consider the elementary
symmetric functions of the eigenvalues. Let F be a finite subset of N and let
s ∈ {1, . . . , |F |}. Then

ΛF ,s [Φ] :=
∑

j1,...,js ∈F
j1<···<js

λj1 [Φ] · · · λjs [Φ]

Theorem (Lamberti, Z.)
i) The map Φ 7→ ΛF ,s [Φ] is real-analytic;
ii) Hadamard formula: simple eigenvalue and in the one-parametric case where

the variation acts on the boundary of Ω as follows (ρ ∈ C1(∂Ω))

∂Ωϵ = {ξ + ϵρ(ξ)ν(ξ) ∈ R3 : ξ ∈ ∂Ω},

dλk(ϵ)
dϵ

∣∣∣∣
ϵ=0

=
∫

∂Ω

(
λk(0)

∣∣u(k)∣∣2 −
∣∣ curl u(k)∣∣2) ρ dσ

where u(k) is the eigenvector of λk normalized in L2(Ω)3.

Shape sensitivity analysis for electromagnetic cavities
3[A real analyticity result for symmetric functions of the eigenvalues of a domain dependent

Dirichlet problem for the Laplace operator]
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Gaffney-Friedrichs inequality
Recall XN(Ω) = {u ∈ L2(Ω) : curl u, div u ∈ L2(Ω), ν × u = 0 on ∂Ω}
Gaffney inclusion: XN(Ω) ⊂ H1(Ω)3.
Gaffney inequality: for all u ∈ XN(Ω)

||Du||2L2(Ω)3×3 ≤ C
(

||div u||2L2(Ω) + ||curl u||2L2(Ω)3 + ||u||2L2(Ω)3

)

Dirichlet Laplacian:
{

−∆φ = f , in Ω,
φ = 0, on ∂Ω,

If Ω is at least Lipschitz

Gaffney inclusion ⇐⇒ H2-regularity for the Dirichlet Laplacian

Gaffney inequality ⇐⇒ H2-a priori estimate for the Dirichlet Laplacian

M. Sh. Birman and M. Z. Solomyak. The Maxwell operator in domains with a nonsmooth
boundary. ’87



Gaffney-Friedrichs inequality
Recall XN(Ω) = {u ∈ L2(Ω) : curl u, div u ∈ L2(Ω), ν × u = 0 on ∂Ω}
Gaffney inclusion: XN(Ω) ⊂ H1(Ω)3.
Gaffney inequality: for all u ∈ XN(Ω)

||Du||2L2(Ω)3×3 ≤ C
(

||div u||2L2(Ω) + ||curl u||2L2(Ω)3 + ||u||2L2(Ω)3

)

Dirichlet Laplacian:
{

−∆φ = f , in Ω,
φ = 0, on ∂Ω,

If Ω is at least Lipschitz

Gaffney inclusion ⇐⇒ H2-regularity for the Dirichlet Laplacian

Gaffney inequality ⇐⇒ H2-a priori estimate for the Dirichlet Laplacian

M. Sh. Birman and M. Z. Solomyak. The Maxwell operator in domains with a nonsmooth
boundary. ’87



Gaffney-Friedrichs inequality
Recall XN(Ω) = {u ∈ L2(Ω) : curl u, div u ∈ L2(Ω), ν × u = 0 on ∂Ω}
Gaffney inclusion: XN(Ω) ⊂ H1(Ω)3.
Gaffney inequality: for all u ∈ XN(Ω)

||Du||2L2(Ω)3×3 ≤ C
(

||div u||2L2(Ω) + ||curl u||2L2(Ω)3 + ||u||2L2(Ω)3

)

Dirichlet Laplacian:
{

−∆φ = f , in Ω,
φ = 0, on ∂Ω,

If Ω is at least Lipschitz

Gaffney inclusion ⇐⇒ H2-regularity for the Dirichlet Laplacian

Gaffney inequality ⇐⇒ H2-a priori estimate for the Dirichlet Laplacian

M. Sh. Birman and M. Z. Solomyak. The Maxwell operator in domains with a nonsmooth
boundary. ’87



Weyl law
In fact, it was Weyl6 himself the first to obtain it for Maxwell

NM (λ) ∼ |Ω|
3π2 λ3/2

Dirichlet/Neumann Laplacian in R3

NLD,N (λ) ∼ |Ω|
2 · 3π2 λ3/2

Pólya conjectured in 1961 that the Weyl estimate of large eigenvalues should be a
strict lower bound for each of the Dirichlet eigenvalues of a domain, and an upper
bound for the Neumann eigenvalues.
Berezin, Li-Yau proved an averaged version of the conjecture for Dirichlet:

1
k

k∑
j=1

dj ≥ 3
5 (2 · 3π2)2/3 k

|Ω|

2/3
,

Kröger for Neumann

1
k

k∑
j=1

µj ≤ 3
5 (2 · 3π2)2/3 k

|Ω|

2/3
.

6[Über das Spectrum der Hohlraumstrahlung (1912)]


