

MAFIA - the seminar you can't refuse

Derivations of Leavitt Path Algebras

Viktor Lopatkin

ČVUT v Praze

19 February 2019 13:15–14:15 in T112

Fakulta jaderná a fyzikálně inženýrská, ČVUT v Praze Trojanova 13, 12000 Praha

Abstract: Given a row-finite directed graph Γ and a field K, G. Abrams and A. Pino in [2], and independently P. Ara, M.A. Moreno, E. Pardo in [5], introduced the *Leavitt path algebra* $L_K(\Gamma)$. This algebra is an algebraic analog of graph Cuntz-Krieger C^* -algebras. These algebras have attracted significant interest and attention, not only from ring theorists, but from analysts working in C^* -algebras, group theorists, and symbolic dynamicists as well [3, 4, 6, 1].

The connections between Leavitt path algebra and C^* -algebras can be described as below. Let Γ be a graph. Very roughly, the process by which a C^* -algebra is associated to Γ consists of decorating the vertices with orthogonal projections on a Hilbert space \mathcal{H} and the edges, with suitable operators. The ensuing C^* subalgebra of the bounded linear operators $B(\mathcal{H})$ is then the graph C^* -algebra $C^*(\Gamma)$. The Leavitt path algebras, denoted as $L(\Gamma)$, are the algebraic siblings of the aforementioned graph C^* -algebras and are constructed over an arbitrary field (whereas here C^* -algebras will always be over the complex numbers). Both classes of algebras, $L(\Gamma)$ and $C^*(\Gamma)$, share a beautiful interplay between highly visual properties of the graph and algebraic/analytical properties of the corresponding underlying graphs. In this talk, we describe the K-module $HH^1(L_K(\Gamma))$ (=the first Hochschild cohomology) of outer derivations of the Leavitt path algebra $L_K(\Gamma)$ of a row-finite graph Γ with coefficients in an associative commutative ring K with unit. We explicitly describe a set of generators of $HH^1(L_K(\Gamma))$ and relations among them. We also describe a Lie algebra structure of outer derivation algebra of the Toeplitz algebra. We prove that every derivation of a Leavitt path algebra can be extended to a derivation of the corresponding C^* -algebra.

References

- [1] G. Abrams, Lavitt path algebra: the first decade, Bull. Math. Sci, 5, (2015), 59–120.
- [2] G. Abrams and G.A. Pino, The Leavitt path algebra of a graph, Journal of Algebra, 293 (2005), 319–334.
- [3] P. Ara and K.R. Goodearl, C^{*}-algebras of separated graphs, Funct. Anal, **261**(9) (2011), 2540–2568.
- [4] P. Ara, K.R. Goodearl, Leavitt path algebras of separated graphs, J. Reine Angew. Math, 669 (2012), 165–224.
- [5] P. Ara, M.A. Moreno and E. Pardo, Nonstable K-theory for graph algebra, Algebr. Prepresent. Theory, 10 (2007), 157–178.
- [6] A. Kumjian and D. Pask, Higher rank graph C*-algebras, N.Y.J. Math, 6 (2000), 1–20.
- [7] A. Kumjian, D. Pask and I. Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math. 184(1), (1998), 161–174.