

MAFIA - the seminar you can't refuse

Strong coupling asymptotics for δ -interactions supported by curves with cusps

Brice Flamencourt

Université Paris Sud

October 29, 2019 13:15–14:15 in T112

Fakulta jaderná a fyzikálně inženýrská ČVUT Trojanova 13, 12000 Praha

Abstract: Let $\Gamma \subset \mathbb{R}^2$ be a simple closed curve which is smooth except at the origin, at which it has a power cusp and coincides with the curve $|x_2| = x_1^p$ for some p > 1. We study the eigenvalues of the Schrödinger operator H_{α} with the attractive δ -potential of strength $\alpha > 0$ supported by Γ , which is defined by its quadratic form

$$H^1(\mathbb{R}^2) \ni u \mapsto \iint_{\mathbb{R}^2} |\nabla u|^2 \,\mathrm{d}x - \alpha \int_{\Gamma} u^2 \,\mathrm{d}s,$$

where ds stands for the one-dimensional Hausdorff measure on Γ . It is shown that if $n \in \mathbb{N}$ is fixed and α is large, then the well-defined nth eigenvalue $E_n(H_\alpha)$ of H_α behaves as

$$E_n(H_{\alpha}) = -\alpha^2 + 2^{\frac{2}{p+2}} \mathcal{E}_n \, \alpha^{\frac{6}{p+2}} + \mathcal{O}(\alpha^{\frac{6}{p+2}-\eta}),$$

where the constants $\mathcal{E}_n > 0$ are the eigenvalues of an explicitly given one-dimensional Schrödinger operator determined by the cusp, and $\eta > 0$. Both main and secondary terms in this asymptotic expansion are different from what was observed previously for the cases when Γ is smooth or piecewise smooth with non-zero angles.