

MAFIA - the seminar you can't refuse

Weakly coupled bound states of Schrödinger operators with complex potentials in one and two dimensions

Nicolas Weber

Graz University of Technology

September 2, 2024 14:30–15:30 in T301

Fakulta jaderná a fyzikálně inženýrská ČVUT Trojanova 13, 12000 Praha

Abstract:

We consider the (not necessarily self-adjoint) Schrödinger operator of the form $H_{\beta} = -\Delta - V_{\beta}$ in $L^2(\mathbb{R}^d)$, $d \in \{1,2\}$, where $V_{\beta} : \mathbb{R}^d \to \mathbb{C}$ is a complex-valued potential, depending on some parameter $\beta \in \mathbb{C}$, such that $V_{\beta} \to 0$ as $\beta \to 0$ in an appropriate sense. We derive sufficient conditions, depending on the decay behaviour of V_{β} and the spatial dimension, for the existence of an eigenvalue $\lambda_{\beta} \in \sigma_p(H_{\beta}) \setminus [0, \infty)$, as $\beta \to 0$, and also obtain an asymptotic expansion for this eigenvalue. Finally, we provide conditions on V_{β} , under which H_{β} never has an eigenvalue in $\mathbb{C} \setminus [0, \infty)$, as $\beta \to 0$.