

MAFIA - the seminar you can't refuse

On existence of minimizers for weighted L^p -Hardy inequalities on $C^{1,\gamma}$ -domains with compact boundary

Yehuda Pinchover

Technion, Israel

November 11, 2025, 12:00-13:00 in T212

Fakulta jaderná a fyzikálně inženýrská ČVUT Trojanova 13, 12000 Praha

Abstract:

Let $p \in (1, \infty)$, $\alpha \in \mathbb{R}$, and $\Omega \subsetneq \mathbb{R}^N$ be a $C^{1,\gamma}$ -domain with a compact boundary $\partial \Omega$, where $\gamma \in (0,1]$. Denote by $\delta_{\Omega}(x)$ the distance of a point $x \in \Omega$ to $\partial \Omega$. Let $\widetilde{W}_0^{1,p;\alpha}(\Omega)$ be the closure of $C_c^{\infty}(\Omega)$ in $\widetilde{W}^{1,p;\alpha}(\Omega)$, where

$$\widetilde{W}^{1,p;\alpha}(\Omega):=\left\{\varphi\in W^{1,p}_{\mathrm{loc}}(\Omega)\mid \left(\left\|\,|\nabla\varphi\,|\right\|^p_{L^p(\Omega;\delta^{-\alpha}_\Omega)}+\left\|\varphi\right\|^p_{L^p(\Omega;\delta^{-(\alpha+p)}_\Omega)}\right)<\infty\right\}.$$

We study the following two variational constants: the weighted Hardy constant

$$H_{\alpha,p}(\Omega) := \inf \left\{ \int_{\Omega} |\nabla \varphi|^p \delta_{\Omega}^{-\alpha} \mathrm{d}x \; \bigg| \; \int_{\Omega} |\varphi|^p \delta_{\Omega}^{-(\alpha+p)} \mathrm{d}x = 1, \varphi \in \widetilde{W}_0^{1,p;\alpha}(\Omega) \right\},$$

and the weighted Hardy constant at infinity

$$\lambda_{\alpha,p}^{\infty}(\Omega) := \sup_{K \in \Omega} \inf_{W_c^{1,p}(\Omega \setminus K)} \left\{ \int_{\Omega \setminus K} |\nabla \varphi|^p \delta_{\Omega}^{-\alpha} \mathrm{d}x \; \bigg| \; \int_{\Omega \setminus K} |\varphi|^p \delta_{\Omega}^{-(\alpha+p)} \mathrm{d}x = 1 \right\}.$$

We show that $H_{\alpha,p}(\Omega)$ is attained if and only if the spectral gap $\Gamma_{\alpha,p}(\Omega) := \lambda_{\alpha,p}^{\infty}(\Omega) - H_{\alpha,p}(\Omega)$ is strictly positive. Moreover, we obtain tight decay estimates for the corresponding minimizers. Furthermore, when Ω is bounded and $\alpha + p = 1$, then $\lambda_{1-p,p}^{\infty}(\Omega) = 0$ (no spectral gap) and the associated operator $-\Delta_{1-p,p}$ is null-critical in Ω with respect to the weight δ_{Ω}^{-1} , whereas, if $\alpha + p < 1$, then $\lambda_{\alpha,p}^{\infty}(\Omega) = \left|\frac{\alpha+p-1}{p}\right|^p > 0 = H_{\alpha,p}(\Omega)$ (positive spectral gap) and $-\Delta_{\alpha,p}$ is positive-critical in Ω with respect to the weight $\delta_{\Omega}^{-(\alpha+p)}$.

This is a joint work with Ujjal Das and Baptiste Devyver.